Set as Homepage - Add to Favorites

精品东京热,精品动漫无码,精品动漫一区,精品动漫一区二区,精品动漫一区二区三区,精品二三四区,精品福利导航,精品福利導航。

【??????? ???????? ??????????】Enter to watch online.Explainer: What Are Tensor Cores?

For the past three years Nvidia has been making graphics chips that feature extra cores,??????? ???????? ?????????? beyond the normal ones used for shaders. Known as tensor cores, these mysterious units can be found in thousands of desktop PCs, laptops, workstations, and data centers around the world. But what exactly are they and what are they used for? Do you even really need them in a graphics card?

Today we'll explain what a tensor is and how tensor cores are used in the world of graphics and deep learning.

Time for a Quick Math Lesson

To understand exactly what tensor cores do and what they can be used for, we first need to cover exactly what tensors are. Microprocessors, regardless what form they come in, all perform math operations (add, multiply, etc) on numbers.

Sometimes these numbers need to be grouped together, because they have some meaning to each other. For example, when a chip is processing data for rendering graphics, it may be dealing with single integer values (such as +2 or +115) for a scaling factor, or a group of floating point numbers (+0.1, -0.5, +0.6) for the coordinations of a point in 3D space. In the case of the latter, the position of the location requires all three pieces of data.

A tensor is a mathematical object that describes the relationship between other mathematical objects that are all linked together.

A tensoris a mathematical object that describes the relationship between other mathematical objects that are all linked together. They are commonly shown as an arrayof numbers, where the dimension of the array can be viewed as shown below.

The simplest type of tensor you can get would have zero dimensions, and consist of a single value – another name for this is a scalarquantity. As we start to increase the number of dimensions, we can come across other common math structures:

  • 1 dimension = vector
  • 2 dimensions = matrix

Strictly speaking, a scalar is a 0 x 0 tensor, a vector is 1 x 0, and a matrix is 1 x 1, but for the sake of simplicity and how it relates to tensor cores in a graphics processor, we'll just deal with tensors in the form of matrices.

One of the most important math operations done with matrices is a multiplication (or product). Let's take a look at how two matrices, both with 4 rows and columns of values, get multiplied together:

The final answer to the multiplication always the same number of rows as the first matrix, and the same number of columns as the second one. So how do you multiply these two arrays? Like this:

As you can see, a 'simple' matrix product calculation consists of a whole stack of little multiplications and additions. Since every CPU on the market today can do both of these operations, it means that any desktop, laptop, or tablet can handle basic tensors.

However, the above example contains 64 multiplications and 48 additions; each small product results in a value that has to be stored somewhere, before it can be accumulated with the other 3 little products, before that final value for the tensor can be stored somewhere. So although matrix multiplications are mathematically straightforward, they're computationallyintensive – lots of registers need to be used, and the cache needs to cope with lots of reads and writes.

CPUs from AMD and Intel have offered various extensions over the years (MMX, SSE, now AVX – all of them are SIMD, single instruction multiple data) that allows the processor to handle lots of floating point numbers at the same time; exactly what matrix multiplications need.

But there is a specific type of processor that is especiallydesigned to handle SIMD operations: graphics processing units (GPUs).

Smarter Than Your Average Calculator?

In the world of graphics, a huge amount of data needs to be moved about and processed in the form of vectors, all at the same time. The parallel processing capability of GPUs makes them ideal for handling tensors and all of them today support something called a GEMM (General Matrix Multiplication).

This is a 'fused' operation, where two matrices are multiplied together, and the answer to which is then accumulated with another matrix. There are some important restrictions on what format the matrices must take and they revolve around the number of rows and columns each matrix has.

The algorithms used to carry out matrix operations tend to work best when matrices are square (for example, using 10 x 10 arrays would work better than 50 x 2) and fairly small in size. But they still work better when processed on hardware that is solely dedicated to these operations.

In December 2017, Nvidia released a graphics card sporting a GPU with a new architecture called Volta. It was aimed at professional markets, so no GeForce models ever used this chip. What made it special was that it was the first graphics processor to have cores just for tensor calculations.

With zero imagination behind the naming, Nvidia's tensor coreswere designed to carry 64 GEMMs per clock cycle on 4 x 4 matrices, containing FP16 values (floating point numbers 16 bits in size) or FP16 multiplication with FP32 addition. Such tensors are very small in size, so when handling actual data sets, the cores would crunch through little blocks of larger matrices, building up the final answer.

Less than a year later, Nvidia launched the Turing architecture. This time the consumer-grade GeForce models sported tensor cores, too. The system had been updated to support other data formats, such as INT8 (8-bit integer values), but other than that, they still worked just as they did in Volta.

Earlier this year, the Ampere architecture made its debut in the A100 data center graphics processor, and this time Nvidia improved the performance (256 GEMMs per cycle, up from 64), added further data formats, and the ability to handle sparse tensors(matrices with lots of zeros in them) very quickly.

For programmers, accessing tensor cores in any of the Volta, Turing, or Ampere chips is easy: the code simply needs to use a flag to tell the API and drivers that you want to use tensor cores, the data type needs to be one supported by the cores, and the dimensions of the matrices need to be a multiple of 8. After that, that hardware will handle everything else.

This is all nice, but just how much better are tensor cores at handling GEMMs than the normal cores in a GPU?

When Volta first appeared, Anandtech carried some math tests using three Nvidia cards: the new Volta, a top-end Pascal-based one, and an older Maxwell card.

The term precisionrefers to the number of bits used for the floating points numbers in the matrices, with double being 64, single is 32, and so on. The horizontal axis refers to the peak number of FP operations carried out per second or FLOPs for short (remember that one GEMM is 3 FLOP).

Just look what the result was when the tensor cores were used, instead of the standard so-called CUDA cores! They're clearly fantastic at doing this kind of work, so just what canyou do with tensor cores?

Math to Make Everything Better

Tensor math is extremely useful in physics and engineering, and is used to solve all kinds of complex problems in fluid mechanics, electromagnetism, and astrophysics, but the computers used to crunch these numbers tend to do the matrix operations on large clusters of CPUs.

Another field that loves using tensors is machine learning, especially the subset deep learning. This is all about handling huge collections of data, in enormous arrays called neural networks. The connections between the various data values are given a specific weight – a number that expresses how important that connection is.

So when you need to work out how all of the hundreds, if not thousands, of connections interact, you need to multiply each piece of data in the network by all the different connection weights. In other words, multiply two matrices together: classic tensor math!

This is why all the big deep learning supercomputers are packed with GPUs and nearly always Nvidia's. However, some companies have gone as far as making their own tensor core processors. Google, for example, announced their first TPU (tensor processing unit) in 2016 but these chips are so specialized, they can't do anything other than matrix operations.

Tensor Cores in Consumer GPUs (GeForce RTX)

But what if you've got an Nvidia GeForce RTX graphics card and you're not an astrophysicist solving problems with Riemannian manifolds, or experimenting with the depths of convolutional neural networks...? What use are tensor cores for you?

For the most part, they're not used for normal rendering, encoding or decoding videos, which might seem like you've wasted your money on a useless feature. However, Nvidia put tensor cores into their consumer products in 2018 (Turing GeForce RTX) while introducing DLSS – Deep Learning Super Sampling.

The basic premise is simple: render a frame at low-ish resolution and when finished, increase the resolution of the end result so that it matches the native screen dimensions of the monitor (e.g. render at 1080p, then resize it to 1400p). That way you get the performance benefit of processing fewer pixels, but still get a nice looking image on the screen.

Consoles have been doing something like this for years, and plenty of today's PC games offer the ability, too. In Ubisoft's Assassin's Creed: Odyssey, you can change the rendering resolution right down to just 50% of the monitor's. Unfortunately, the result doesn't look so hot. This is what the game looks like a 4K, with maximum graphics settings applied (click to see the full resolution version):

Running at high resolutions means textures look a lot better, as they retain fine detail. Unfortunately, all those pixels take a lot of processing to churn them out. Now look what happens when the game is set to render at 1080p (25% the amount of pixels than before), but then use shaders at the end to expand it back out to 4K.

The difference might not be immediately obvious, thanks to jpeg compression and the rescaling of the images on our website, but the character's armor and the distance rock formation are somewhat blurred. Let's zoom into a section for a closer inspection:

The left section has been rendered natively at 4K; on the right, it's 1080p upscaled to 4K. The difference is far more pronounced once motion is involved, as the softening of all the details rapidly becomes a blurry mush. Some of this could be clawed back by using a sharpening effect in the graphics card's drivers, but it would be better to not have to do this at all.

This is where DLSS plays its hand – in Nvidia's first iteration of the technology, selected games were analyzed, running them at low resolutions, high resolutions, with and without anti-aliasing. All of these modes generated a wealth of images that were fed into their own supercomputers, which used a neural network to determine how best to turn a 1080p image into a perfect higher resolution one.

It has to be said that DLSS 1.0 wasn't great, with detail often lost or weird shimmering in some places. Nor did it actually use the tensor cores on your graphics card (that was done on Nvidia's network) and every game supporting DLSS required its own examination by Nvidia to generate the upscaling algorithm.

When version 2.0 came out in early 2020, some big improvements had been made. The most notable of which was that Nvidia's supercomputers were only used to create a general upscaling algorithm – in the new iteration of DLSS, data from the rendered frame would be used to process the pixels (via your GPU's tensor cores) using the neural model.

We remain impressed by what DLSS 2.0 can achieve, but for now very few games support it – just 12 in total, at the time of writing. More developers are looking to implement it in their future releases, though, and for good reasons.

There are big performance gains to be found, doing any kind of upscaling, so you can bet your last dollar that DLSS will continue to evolve.

Although the visual output of DLSS isn't always perfect, by freeing up rendering performance, developers have the scope to include more visual effects or offer the same graphics across a wider range of platforms.

Case in point, DLSS is often seen promoted alongside ray tracing in "RTX enabled" games. GeForce RTX GPUs pack additional compute units called RT cores: dedicated logic units for accelerating ray-triangle intersection and bounding volume hierarchy (BVH) traversal calculations. These two processes are time consuming routines for working out where a light interacts with the rest of objects within a scene.

As we've found out, ray tracing is super intensive, so in order to deliver playable performance game developers must limit the number of rays and bounces performed in a scene. This process can result in grainy images, too, so a denoising algorithm has to be applied, adding to the processing complexity. Tensor cores are expected to aid performance here using AI-based denoising, although that has yet to materialize with most current applications still using CUDA cores for the task. On the upside, with DLSS 2.0 becoming a viable upscaling technique, tensor cores can effectively be used to boost frame rates after ray tracing has been applied to a scene.

There are other plans for the tensor cores in GeForce RTX cards, too, such as better character animation or cloth simulation. But like DLSS 1.0 before them, it will be a while before hundreds of games are routinely using the specialized matrix calculators in GPUs.

Early Days But the Promise Is There

So there we go – tensor cores, nifty little bits of hardware, but only found in a small number of consumer-level graphics cards. Will this change in the future? Since Nvidia has already substantially improved the performance of a single tensor core in their latest Ampere architecture, there's good a chance that we'll see more mid-range and budget models sporting them, too.

While AMD and Intel don't have them in their GPUs, we may see something similar being implemented by them in the future. AMD does offer a system to sharpen or enhance the detail in completed frames, for a tiny performance cost, so they may well just stick to that – especially since it doesn't need to be integrated by developers; it's just a toggle in the drivers.

There's also the argument that die space in graphics chips could be better spent on just adding more shader cores, something Nvidia did when they built the budget versions of their Turing chips. The likes of the GeForce GTX 1650 dropped the tensor cores altogether, and replaced them with extra FP16 shaders.

But for now, if you want to experience super fast GEMM throughput and all the benefits this can bring, you've got two choices: get yourself a bunch of huge multicore CPUs or just one GPU with tensor cores.

Shopping Shortcuts:
  • GeForce GTX 1660 Super on Amazon
  • GeForce RTX 2060 on Amazon
  • GeForce RTX 2070 Super on Amazon
  • GeForce RTX 2080 Super on Amazon
  • GeForce RTX 2080 Ti on Amazon
  • Radeon RX 5600 XT on Amazon
  • Radeon RX 5700 XT on Amazon
More Technical Reads
  • Navi vs. Turing: An Architecture Comparison
  • Explainer: What Is Chip Binning?
  • How 3D Game Rendering Works: Lighting and Shadows
  • Anatomy of a Graphics Card

0.199s , 10234.3515625 kb

Copyright © 2025 Powered by 【??????? ???????? ??????????】Enter to watch online.Explainer: What Are Tensor Cores?,  

Sitemap

Top 精品日产一卡二卡四卡 | 欧美三级在线视频 | 露脸一二三区国语对白 | 婷婷激情综合色五月久久竹菊影视 | 嫩草院一区二区乱码 | 日日噜 | 久久永久免费无码人妻精品 | 久久久久久久中文字幕 | 波多野结衣久久国产精品 | 日韩欧美视频一区二区三区 | 久久久久久一级毛片免费野外 | 精品伊人久久久久网站 | 人妻无码第一区二区三区 | 永久免费看A片无码播放器不卡 | 久久男人高潮av女人高潮天堂 | 亚洲欧美另类都市激情一区 | 国产肥白大熟妇BBBB视频 | 狠狠躁日日躁夜夜躁A片 | 午夜福利1692免费视颍 | 四虎国产精品永久在线 | 国产成a人亚洲精v品无码 | av手机原创精品网址 | 久久久久久久久综合影视网 | 国产精品污在线观看 | 久久久久亚洲av无码专区网站 | 一区二区中文字幕日韩 | 人妻熟女成人免费视频 | 波多野结衣中文 | 国产人妖乱国产精品人妖 | 欧美另类在线观看 | 色在线视频免费观看视频 | 色综合中文字幕 | 亚洲男人电影天堂无码 | 无码人妻精品一区二区三区东京热 | av无码播放一区二区三区 | 欧美性爱-第1页 | 久久精品99国产精品最新 | 玖玖精品国产 | 2024四虎影视最新在线 | 国产精品久久人妻无码A片 国产精品久久人妻无码蜜 国产精品久久人妻无码网站一区L | 夫妻性姿势真人做视频 | 囯产精品无码成人久久久3p | 久草热视频在线 | 麻豆久久婷婷国产综合五月 | 波多野结衣视频 | 精品一区二区三区视频在线观看 | 国产精品爽爽久久久久久无码 | 亚洲日韩精品国产3区 | 91麻豆国产自产 | 99re在线视频一区 | 午夜人妻av一区二区三区 | 91麻豆天美京东蜜桃传媒老牛 | 91精品久久福利 | 国产日韩ai换脸在线第一页 | 亚洲国产精品无码久久九九大片 | chinese高潮久久xxx | 啪啪啪动态图 | 国产成人精品cao在 国产成人精品cao在线 | 在线视频国偷自产 | 揄揄撸一区二区三区土豆 | 日韩人妻系列无码专区三级 | 久久久精品二区三区 | 亚洲欧美一区二区三区久久 | 国产成人麻豆精品午夜福利在 | 精品无码综合福利网 | a片无码一区二区三区在线 a片一区二区三区 | 5566在线资源 | 国产精品久久久久国产A级 国产精品久久久久国产三级无码 | av资源每日更新网站 | 免费无遮挡无码永久在线观看视频 | av三级网站免费观看 | 94色94色永久网站 | 久久久久久综合一区中文字幕 | 国产精品亚洲精品无码 | 天堂AV无码AV毛片毛 | 少妇特黄A片一区二区三区免费看 | 亚洲日韩久久综合中文字幕 | 无码aⅴ网站在线观看 | 国产无码一区二区久久 | 亚洲精品久久久久久偷窥 | 国产成人一区二区三区久久精品 | 久久欧美成人A片 | 日韩MV欧美MV中文无码 | 2024国产欧洲精品网站 | 久久精品国产乱子伦多人 | 国产三级无码内射在线看 | 免费乱人伦 | 中文字幕无码一区二区三区四 | 高清在线不卡中文字幕网 | 99久久精品国产一区二区三区 | 西西人体午夜视频 | 午夜视频在线观看 | 麻豆影视国产在线观看 | 国产精品久久久久国产A级 国产精品久久久久国产三级无码 | 国产一区二区免费不卡在 | 国产SUV精品一区二区883 | 中文成人精品视频久久视频 | 精品久久久久久动漫 | 中文字幕免费视频精品一 | 亚洲制服丝袜精品久久 | 色噜噜狠狠色综合久夜色撩人 | 黑人巨大精品欧美一区二区o | 97在线视频观看 | 97精品人妻酒店综合大胆无码 | 九九久久精品国产 | 国产亚洲一区电影在线观看 | 国产综合久久久久久 | 精品日本一区二区三区在 | 99久久精品免费看国产电影 | 日韩精品色亚洲一区二区三区 | 久激情内射婷内射蜜桃人妖 | 国产精品无码aⅴ精品影院 国产精品无码aⅴ嫩草 | 肉小说污肉 | 亚洲国产成人超a在线播放 亚洲国产成人丁香五月激情 | 精品一区二区三区中文在线 | 国内精品久久久视频 | 日本多人强伦姧人妻bd | ts人妖系列在线专区 | 老司机午夜免费福利视频 | 久久黄色小视频 | 国产a线视频播放 | 加勒比中文字幕无码不卡 | 久久永久免费观看 | 无码精品黑人一区二区三区 | 免费播放欧美毛片欧美AAAAA | 五月小说网最新最热的小说文学网站 | 国产精品成人无码久久久久久 | 2024国产福利每日更新 | 精品视频无码一区二区三区 | 人妻丰满av无码久久不卡 | 99久久精品免费看国产一区二 | 国产亚洲精品久久久久久国 | 国产颜射手机在线播放 | 2024国内精品久久久久精k8 | 一本色道久久综合亚洲精品 | 精品日本三级在线观看视频 | 国产成人无码综合 | 国产av无码不卡 | 成人在无码AV在线观看一 | 日韩一区二区三区不卡片小辣椒 | 91精品国产高清久久久久久99 | 性色av无码一区二区三区人妻 | 在线亚洲AV不卡一区二区 | 91网站网址最新 | 国99久9在线 | 国产成人av电影在线观看第页 | 国产一区二区视频在线观看 | 国产成人综合在线视频看 | 亚洲av狠狠爱一区二区三区 | 久久久精品人妻一区二区三区四 | 成年女人毛片免费视频喷潮 | 亚洲午夜久久久精品影院 | 麻豆国产av尤物网站尤物 | 18禁肉肉无遮挡无码网站 | 国产成人一区二区三区在线 | 亚洲永久精品无码中文字幕 | 成人欧美一区二区三区在线播放 | 日韩视频网址 | 久久亚洲精品中文字幕无码 | 99精品免费久久久久久久久日本 | 国产偷国产偷亚洲高清在线 | 韩国三级片大全在线观看 | 狠狠色狠狠色综合久久伊人 | 久久久久精品精品6精品精品 | 亚洲国产福利成人一区二区 | 麻豆国产精品一二三在线观看 | 成人无码h动漫网站免费视频 | 国产精品不卡午夜精品网站 | 日本一区二区三区在线视频观看免费 | 国产精品综合色区 | av撸色 | 国产成人18黄禁网站免费观看 | 人妻少妇中文字幕久久 | 欧美日韩亚洲中文字幕 | 无码免费无线观看在线视 | 国产一区二区三区国产精品 | av无码东京热亚洲男人的天堂 | 高清在线精品一区二区 | 91精品国产综合久久久久久va | 日本黄页网站免费 | 大JI巴放进女人免费视频 | 1024手机在线精品 | 人妻无码在线视频观看 | 成人无码视频在线播放 | 色婷婷色综合缴情网站 | 中文字幕卡二和卡三的视频 | 午夜亚洲国产理论片4080 | 天天干天天射天天做天天插 | 国产精品日韩在线一区 | 国产午夜一区二区三区四区 | 毛片自拍 | 天天干天天插网 | 国产爆乳无码福利电影 | 高潮真紧好爽我视频 | jizzjizz中文在线播放 | 国产精品成人无码a片免费网址 | 欧美日韩国产精品国内午夜熟妇 | 无套内射视频囯产 | 国产熟女亚洲精品麻豆 | 午夜精品久久久久久久久 | 久久久久免费精品国产小说 | 久久精品在线播放 | 成人h动漫精品一区二区无码3d | 日本熟妇乱人伦A片精品软件 | 波多野结衣视频一区 | 国产产一区二区三区久久毛片国语 | 人妻夜夜爽爽88888视频 | 韩国一级毛片a级免观看 | 久久人妻av一区二区软件 | 久久久久久久久久久国产精品 | 中文字幕av人妻少妇一区二区 | 国产视频一二 | 久久99九九精品免费 | 国产精品毛片AV在线看 | 激情A片久久久久久久 | 久久国内精品自在自线观看v | 日本黄色免费网址 | 久久91精品国产一区二区三区 | 国产女主播91 | 国产午睡沙发客厅25分钟 | 国产亚洲另类精品调教小说欧美韩国欧美专区 | WWW日韩AV免费高清看 | 日本三级带日本三级带黄首页 | 在线观看精品自拍视频 | 精品人妻伦一二三区久久 | 国产精品亚洲日韩au在线 | 丁香婷婷激情 | 波多野结衣高清一区二区三区 | 丰满熟女一区二区蜜桃 | 熟女视频人妻欧美国产精品麻豆成人a | 国产无码一区二区三区不卡视频 | 亚洲aⅴ久久 | 亚洲一区三区激情啪啪欧美 | 精品国产种子在线观看 | 麻豆自制传媒最新网站 | 国产精品美女被啪啪啪 | 日韩精品一区二区国产精品一 | 国产av人妻无码一区二区 | 久久久精品国产亚洲成人满1 | 麻豆国产精品久久人妻 | 欧美日韩一区二区三区四 | 亚洲精品久久久久久偷窥 | 久久草资在线播放 | 久久国产乱子伦精品 | 久久免费精品视频国产首页 | 超清中文乱码字幕在线观看 | 亚洲精品在线免费 | 大香线蕉伊人久久爱 | 无码成人午夜在线观看 | 国产在线精品一区免费香蕉 | 久久国产乱子伦精品免费台湾 | aaa级精品无码久久久国产片 | 欧美精品18videose性欧美 | 久久久国产精品亚 | 国产91高清在线观看 | 精品人妻潮喷久久久又裸又黄 | 韩国精品一区二区三区在线观看 | 少妇高清精品毛片在线视频 | 国产精品无码久久久久 | 国产av电影区二区三区 | 中文字幕精品乱码亚洲一区 | 成片一卡二卡三卡观看 | 欧美日韩免费专区在线 | 日本三级大乳舌吻 | 久久久久av无码免费网 | 精品国产亚洲av麻豆映画 | 天天摸日日干夜夜操 | 日本H无码黄肉动漫后宫 | 中文字幕免费人妻 | v日韩v欧美在线观看 | 中文亚洲网站播放 | 欧美高清一级 | 影音先锋av男人色情 | 亚洲男人的天堂在线aⅴ视频 | 久久国产这里只精品免费 | 国产精品剧情原创麻豆国产 | 国产无套乱子伦精彩是白视频 | 久久精品国产片 | 91福利精品老师国产自产在 | 黑人大JI巴做爰呻吟视频 | 亚洲一区二区三区免费看 | 国产午夜精品AV一区二区麻豆 | 色永久免费视频首页 | 爱操综合网 | 成年视频xxxxxx在线 | 精品视频一区二区三区中文字幕 | 在线va无卡无码高清 | 国产欧美在线一区二区三区 | 国产欧美日韩精品丝袜高跟鞋 | 熟妇丰满人妻无码 | 国产a级作爱片免费看 | 91人妻人人澡人人爽人人精品 | 国产精品 中文字幕 亚洲 欧美 | 国产日韩成人内射视频 | a人在线看片| 欧美一级做影片爱橙影院 | 精品日本一区二区三区在 | 精品久久久久久久高清 | 麻豆文化传媒有限 | 综合av中文字幕电影 | 成人久久18秘免费 | av无码精品放毛片 | 久久亚洲av无码精品色午夜 | 欧美日本精品一区二区三区 | 精东影视文化传媒有限公司 | 国产成人精品免费视频网页大全 | 国产最新午夜视频网站 | 丁香婷婷五月情天 | 国产精品乱码一区二三区 | 亚洲人妻av经典 | 精品人妻无码一区二区三区葡京 | 99国精产品品质溯源网 | av潮喷大喷水系列无码 | 久久精品国产亚洲av网站 | 国产成人精选视频在线观看 | 国精品无码一区二区三区在线A片 | 波多野结衣av一区二区全免费观看 | 无人区在线高清完整免费 | 97蜜桃图片 | 麻豆果冻文化传媒网站 | 啪啪啪动态图 | 99久久久怡红院精品一区二区 | 精品奶水区一区二区三区在线观看 | 日本熟妇乱妇熟色在线电影 | 巜隔壁放荡人妻bd高清 | 久久久亚洲精品免费 | 色婷婷激婷婷深爱五月小说 | 国产精品三级在线播放 | 国产福利视频在线精品 | 欧美日韩午夜一区二区 | 国产篇一级黄色.a一级黄色片免费一级毛片.中国国产一级 | 精品国内成人综合亚洲 | 国产高清在线精品二区 | 精品亚洲欧美v国产一区二区三区 | 亚洲欧美国产日产综合不卡 | 五月天婷婷丁香花综合缴情 | 高清一区二区亚洲欧美日韩 | 欧美一级黑人一级 | 制服丝袜中文字幕无码 | 蜜臀av午夜福利在线观看 | 久久天天躁狠狠躁夜夜躁2024 | 亚洲国产成人资源在线桃色 | 欧美激情肉欲高潮无码鲁大师 | 国产av性爱| 日本在线中文字幕 | 日本视频a | a亚洲在线观看不卡高清 | 国产啪精品视频网站 | 四虎影视免费观看免费观看 | 97久久精品人妻人人搡人人玩 | 麻豆人妻少妇精品无码专 | 一个本道久久综合 | 无码中文字幕免费一区二区蜜桃 | 国产精品久久久久影院色 | 72式性无遮挡免费视频 | 国产精品一区二区三区99性 | 久久99国产一区二区 | 色大18成网站在线观看 | 国产亚洲精品久久久999密臂 | 成人国产精品高清在线观看 | 波多野结衣在线视频播放一区二区 | 精品人妻无码一区二区色欲产成 | 国产真实乱对白精彩久久 | 老司机精品视频一区二区 | 无码淫网站 | 国产精品无码aⅴ精品影院 国产精品无码aⅴ嫩草 | 精品久久久久久无码中文字幕版 | 国产乱子伦一级毛片 | 欧美日韩在线一区亚洲二区 | 2024国产乱人伦在线播放 | 国产成人高清激情视频在线观看 | 精品久久久无码大桥未久 | 麻豆国产巨作AV剧情 | 国内精品久久久久久影院网站小说 | 久久久久久久久久国产精品免费 | 久久国产视频网站 | 亚洲国产成人精品无码一区二区三区 | 精品亚洲一区二区在线播放 | 国产韩国精品一区二区三区 | 欧美精品在线三区 | 亚洲色欲色欲www在线播放 | 黑人狂躁日本妞无码视WWW | 无套内谢少妇毛片A片免费视频 | 人人操人人模人人干 | 国产成人精品日本亚洲18 | 国产成人av在线播放不卡 | 国产精品久久久无码A片小说 | 亚洲欧美精品三级 | 日本乱人伦 | 东京热高清不卡二区三区高清無tv碼 | 亚洲av色婷婷在线观看 | 精品国产无码一区二区 | 精品人妻无码一区二区三区蜜桃一 | 国产三级级在线观看大学生 | 2024国产精品人妻无码 | 伦理电影中文字幕韩国在线观看 | 91性视频| 精品超清无码视频在线观看 | 精品国产一区二区三区四区特色 | 亚洲 日韩 欧美 制服 无码 | 午夜福利在线观看6080 | 国产交换精品一区二区三区免费 | 91精品国产高清久久久久久伦理片电影免费在线 | 男女男免费视频网站国产 | 男人天堂2018亚洲男人天堂 | 99久久无码一区人妻a黑 | 高潮无遮挡成人A片在线看 高潮一区二区三区四区在线播放 | 成人xxxx中国无遮挡日本护士被黑人强伦姧人妻 | 人妻无码久久久久久久 | 99国产精品久久久久久久日本竹 | 亚洲成av人最新无码 | 乱人伦人妻中文字幕不卡 | 色屁屁一区二区三区视频国产 | 久久精品国产99久久久 | 噜噜噜噜私人影院av线观看 | 亚洲精品乱码久久久久久 | 成人国产在线视频 | a级粗大硬长爽猛视频免费 a级大胆欧 | 久久久久99精品成人片直播 | 日韩av无码国产精品 | 国产亚洲精品aaa在线观看 | 日韩精品人妻无码久久影院 | 一本道久久精 | 精品国产日韩亚洲一区二区 | 国产三級精品专区 | 久久久久久精品毛片免费不卡 | 男人的天堂AV亚洲一区2区 | 乱人伦人妻精品一区二区 | 国产亚洲视频免费播放 | 国产综合精品中文字幕免费 | AV无码影院在线播放 | 精品亚洲麻豆1区2区3区 | 久草国产在线播放 | 久久久久精品久久久久 | 亚洲欧美另类久久久精品能播放 | 精品一二三区久久AAA片 | 麻豆精品一区二区三区高清 | 99久久国语对白精品露脸 | 在线观看免费大片 | 欧美日韩国产人妖色视频 | 亚洲精品成人片在线观看精品字幕 | 欧美亚洲另类自拍丝袜 | 精品国产一区二区三区不卡 | 欧美1区2区3区 | 国产精品无码无片在线观看 | 一本色道久久综合亚洲精品 | 久久成人永久免费播放 | 国产欧美丝袜二区在线 | 欧美三级网站高清国产不卡 | 狠狠狠的在啪线香蕉 | 精品综合久久久久久97超人 | 中文字幕乱码强奸免费熟女 | 果冻传媒一二三产区 | 九九九涩涩 | 孕妇奶水仑乱a级 | 国产91白浆在线观看 | 青青草原综合久久大伊人精品 | 日产中文乱码字幕无线观看 | 国产熟妇无码一区二区三区H | 毛片不卡一区二区三区 | 91尤物在线一区二区三区 | 久久久无码精品亚洲日韩啪啪网站 | 岛国av污片在线观看 | 天天干天天操天天 精品一区二区久 | 久久久99精品免费观看精品 | 久久国产精品麻豆av影视 | 国精产品一品二品国精日本 | 2024国产在线精品国自产拍 | 毛片无码免费无码播放 | 久久精品第一国产久精国产宅男66 | 2024在线观看视频精品免费 | 国产午夜鲁丝无码拍拍 | 亚洲高清在线不卡中文字幕网 | 制服丝袜无码中文字幕在线 | 精品久久久久久久久精品 | 欧亚精品码1码2一码3码 | 欧美激情精品久久久久久 | 91极品视频在线观看 | 天美传媒MV免费观看软件的特点 | 久久久久亚洲Av片无码一区 | 日韩精品无码中文字幕一区二区 | 99麻豆久久久国产精品免费 | 中国丰满少妇人妻xxx性董鑫 | 国产精品天干天干 | 精品视频在线播放 | 国产精品成人影院久久久 | 丁香婷婷综合五月综合色啪 | 蜜桃臀无码内射一区二区三 | 51精品资源视频在线播放 | 天天干天天爱天天 | 国产成a人亚洲精v品无码 | 91国内小视频在线 | 国产成人精品无码区 | 亚洲va成无码人在线观看天堂 | 91久久国产精品 | 久久久国产精品亚洲一区 | 精品无码国产自产野外拍在线 | 国产精品白浆无码浪潮av | 欧美激情视频一区二区免费 | 久久国产乱子伦精品另类 | 2024国产成人午夜精品福利 | 精品人伦一区二区三区潘金莲 | 国产精品小黄鸭一区二区三区 | 欧美激情视频二区三区 | 国产欧美另类第一页 | 精品丰满少妇一区二区三区 | 免费人成黄页在线观看视频国产 | 波多野结衣人妻渴望A片 | 国产av综合a一区二区三区 | 久久精品美女 | 无码素人福利不卡 | 性欧美国产高清在线观看 | 亚洲九九夜夜 国产成人精品综合久久 | 狠狠色噜噜狠狠狠888奇米 | 少妇高潮喷水惨叫久无码一区二 | 日韩综合在线视频 | 啪啪免费视频一区二区 | 久久国产精品福利一区二区三区 | 久久伊人加勒比一区二区 | 成人无遮挡18禁免费视频 | 波多野结衣av一区 | 亚洲精品无码成人A片在线小说 | 日韩在线免费观看av网站 | 911国产自产精品 | 波多野结衣av一区二区无码 | 亚洲精品永久免费精品 | 亚洲色无码专区在线 | 日韩在线观看免费视频一区 | 日日摸天天添天天添无码蜜臀 | 亚洲午夜无码毛片AV久久京东热 | 少妇高潮灌满白浆毛片免费看 | 日韩国产成人资源精品视频 | 精品人妻无码一区二 | 国产盗摄在线观看 | 亚洲欧美日本久久综合网站 | 丁香五月激情婷婷 | 久久精品国产亚洲av品善 | 日本一区二区久久久精品超碰又黄又 | 内射极品少妇XXXXXHD | 欧美成人一区二区三区蜜臀 | 久久精品国产清高在天天线 | 精品久久久久一区二区 | 91久久嫩草影院免费3p看 | 亚洲日韩av无码一区二区三区 | 人妻熟女视频一区二二区 | 亚洲欧美日韩国产一区二区三区精品 | 日韩人妻丝袜无码中文字幕 | 久久精品国产福利国产琪琪 | 久久久久九九精品影院 | 动漫av永久无码精品每 | 波多野结衣中文乱码免费 | 国产欧洲精品在线观看 | 美妇乱人伦交换小说/大乳欲妇三级一区二区三区/天天操 | 国产精品久久久久永久免费看 | 亚洲精品网站日本xxxxxxx | 亚洲国产成人精品无码区花野真一 | 亚洲国产成人精品无码一区二区三区 | 欧美日韩精品视频一区在 | 精品无码视频无码专区 | 久久久久久久久深夜福利视频网址 | 亚洲一区三区激情啪啪欧美 | 亚洲国产成人不卡在线播放 | 亚洲视频影院 | 欧美精产国品一二三产品区别在哪 | 99久亚洲精品视频 | 成人午夜亚洲精品无码网站 | 欧美视频在线观看免费观 | 日韩精品中文字幕无码一区 | 77777亚洲午夜久久多喷 | 综合久久国产对白 | 朋友的人妻的滋味BD中文 | 欧美黑人性暴力猛交免费看 | 国产女同性黄网在线观看 | 日韩精品无码一区二区河北彩花 | 精品免费国产一区二区三区四区五 | 国产av夜夜欢一区二区三区 | 色情成人韩国在线视频 | 国产精品亚洲专区无码不卡 | 日韩一区二区在线观看日韩 | 日韩精品欧美亚洲高清有无 | 91亚洲无码视频 | 亚洲欧美日韩国产色另类 | 国产日韩久久 | 精品一区二区三区四区激情 | 欧美在线三级艳情网站 | 亚洲精品无码成人A片色欲 亚洲精品无码成人A片在 | 国产一区二区精品久久小说 | 精品国产一区二区三区在线观看 | 手机看片久久久久久久 | 亚洲欧美日韩高清一区 | 人与动动物a级毛片中文 | 乱人伦人妻中文字幕无码久久网 | 成片一二三区在线观看黄色一级片 | 国产人妻人伦精品98 | 无码人妻一区二区三区免费看 | 日本a级精品一区二区三区 日本a级免费 | 中文字幕卡二和卡三的视频 | 无码夜色一区二区三区 | 99久无码中文字幕一本久道 | 97亚洲熟妇自偷自拍另类图片欧美欧美一区免费视频高清天 | 国产JJZZJJZZ视频免费看 | 中文字幕一区二 | 蜜臀久久99精品 | 亚洲欧美另类在线制服 | 东京热人妻中文无码av | 精品天天中文字幕人妻 | 精品久久久久中文字幕日本 | 国产麻豆天美果冻无码视频 | 久久91精品国产一区二区 | 国产黄片av在线播放 | 亚婷婷洲AV久久蜜臀无码 | 日产日韩亚洲欧美综合搜索 | 久久综合桃花网 | 久久无码色综合中文字幕 | av免费网站 | 国产精华液一线二线三线 | 精品国产乱码久久久久久蜜桃一 | 五月六月欧美一区二区 | 午夜在线视频国产极品片 | 欧美日韩国产系列在线观看 | 欧美久久综合一区二区三区 | 精品国产乱码久久久久久口爆 | 国内精品伊人久久久久 | 久久精品视在线看1 | 大JI巴放进女人免费视频 | 69堂午夜精品视频在线 | 日产幕无线码三区在线 | 天天人人干干 | 国产欧美一区视频在线观看 | 日本大片高清免费视频日本 | 日韩欧美一区二区三区在线观看 | 麻豆视频免费版 | a级在线观看日韩 | 久久久久亚洲av无码专区首jn | 国产乱子伦手机在线 | 人凌参观园辱中文2动漫 | av天堂影片精品 | 99久久精品免费看国产高清 | 精品国产乱码久久久久久浪潮小说 | 久久久国产人妻精品 | 老司机精品影院一区二区三区 | 99久久精品免费只有国产 | 精品无人区无码乱码大片国产 | 亚洲国产成人影院在线播放 | 东京热无码a√国产精品 | 国产福利麻豆精品一区 | 国产动漫一区二区免费69 | 九九精品99久久久香蕉 | 精品人妻中文无码av在线 | 国产拳头交一区二区 | 国产片精品在线 | 吃奶呻吟打开双腿做愛 | 国产山东48老熟女嗷嗷叫白浆 | 免费又黄又硬又爽大片 | 国产福利亚洲一区二区三区 | 国产精品一区福利小视频 | 午夜视频一区二区三区 | 欧美亚洲综合另类型色妞 | 香港aa三级久久三级不卡 | 日韩精品无码视频1区 | 国产精品原创尤物 | 亚洲日韩欧美明星在线观看 | 欧美变态另类人妖 | 欧美特级午夜一区二区三 | 国产综合色精品一区二区三区 | 激情文学另类小说亚洲图片 | 国产欧美日韩精品61在线不卡 | 精品人妻无码一区二区三区VOD | 久久露脸国产精品电影 | 丰满熟女高潮毛茸茸欧洲 | 久久久久国产精 | 亚洲精品久久久久久久久AV无码 | 亚洲精品少妇熟女 | 韩国精品一区二区无码视频 | 亚洲中文无码福利网址 | 秋霞成人午夜鲁丝一区二区三区 | 激情A片久久久久久播放 | 精品一区二区三区中文在线 | 亚洲国产精品久久久久秋霞影院 | 国产成人精品高清在线观看99中文字幕av在线 | 春色校园小说综合网 | 国产一级做a爰片久久毛片男 | 人妻久久久精品99系列A片毛 | 国产a毛片高清视频下载 | 丁香五月综合九 | 成人精品视频一区二区在线播放 | 在线成人中文字幕 | 绯色成人无码在线播放 | 91在线导航| 国产精品伦一区二区三级视 | 免费国产理论片在线观看播放 | 国产无套粉嫩白浆内射在线 | 3d肉蒲团快播种子 | 国产三级国产精品 | 日本a天堂 | 丁香婷婷亚洲六月综合色 | 日本亚洲中文字幕不卡 | 91精品婷婷久久久久久 | 免费中文字幕囯产在线网站 | 国产suv精品麻豆乱码一区二区三区 | 国产哺乳奶水91在线播放 | 欧美日韩国产综合视频在线观看 | 少妇无码一区二区三区免费 | 99久久免费只有精品国产视频免费 | 免费国产a国产片高清 | 国产精品久久久久无毒 | 国产无遮挡又黄又爽在线视频 | 成人五夜天 | 国产免费福利视频一区二区 | 欧美日韩日本 | 超碰97av 在线人人操 | 精品国产福利一区二区三区 | 日本vpswindows美国 | 久久婷婷激情综合中文字幕 | 日韩毛片无码中文专区 | 国产麻豆影院在线观看 | 福利乱码卡一卡二卡新区 | 国产精品久久丫毛片A片软件 | 国产精品系列一区二区三区 | 精品少妇爆乳av无码专区 | 久久久99精品久久久久久 | 秋霞av一区二区二三区 | 国产成人成网站在线播放青青 | 国产无码在线观看二区三区 | 午夜精品人妻无码一区二区三区 | 久久久久久久久久精品电影 | 国产a久久秘 | 国产日韩精品一区二区四虎 | 一区二区三区不卡视频 | 国产VA精品午夜福利视频 | 露脸一二三区国语对白 | 国产精品高清视亚洲中文 | 欧美日韩亚洲无线码在线观看 | 国产精品一级二级在线观看 | 一区二区传媒有限公司 | 撕开胸罩胸奶头玩大胸动态图片 | 精品久久久久久精品三级 | 久热精品6 | 一级毛片免费在线观看 | 91综合国产 | 国产成人亚洲综合a婷婷 | 精品国产乱子宅男伦一区二区三区 | 精产国品一二三产区99 | 日韩插啊免费视频在线观看 | 成人性生交A片免费看麻豆 成人性生交a片免费看武则天一 | 色欲AV亚洲精品一区二区 | 97久久精品无码一区二区 | 欧洲无线一线二线三线区别大吗 | 日韩一区二区三区电影在线观看 | 东京热免费视频一区二区三区 | 91精品自产拍在线观看 | 曰韩欧美群交p片内射 | 白莲花乖腿打开h调教 | 国产精品久久久久尤物 | 欧美日韩高清不卡一 | 欧美真实强奸一级a人成在线观看 | 日韩精品卡4卡5卡6卡7卡3卡 | 丰满熟女A片免费观 | 国产又粗又大又爽免费视频 | 亚洲欧美另类在线视频 | 自拍视频国产在线导航 | 久久久久精品久久久 | 欧洲亚洲精品A片久久果冻 欧洲亚洲永久入口免费 | 亚洲亚洲人成综合网站 | 日本韩无专砖码高清 | 亚洲日韩日本中文在线 | 国产在线无码视频一区二区三区 | 无码欧美毛片一区二区三 | 久久婷婷五月综合色国产 | 亚洲欧美综合国产精品一区 | 波多野结衣无码中文字幕 | 欧美日韩精品免费 | 亚洲综合国产在不卡在线 | 91精品酒色国产综合久久 | 国产三级自拍视频 | 色欲人妻无码aⅴ一区二 | 久久aa毛片免费播放嗯啊 | 国产精品一区二区不卡在线 | 亚洲欧美日韩精品高清 | 国产一区二区区别:内容差异与特点 | 丰满人妻av无码一区二区三区 | 日本人妖一区二区 | 福利乱码卡一卡二卡新区 | 91麻豆精品国产 | 国产精品无码中字 | 日本亚洲精品久久蜜臀 | 91一区二区三区 | 日本中文字幕网 | 久久亚洲国产高清 | 欧美日韩整片中文字幕 | 国产黄色一级网站 | 看a片的网站 | 中文字幕亚洲综合小综合在线 | 麻豆精品传媒2024艾秋刺青 | 亚洲三级无码经典三级 | 国产中文中文娱乐无码 | 欧美日韩国产综合第一区 | 97人妻超在线观看免费 | 精品国产天堂综合一区在线 |