Set as Homepage - Add to Favorites

精品东京热,精品动漫无码,精品动漫一区,精品动漫一区二区,精品动漫一区二区三区,精品二三四区,精品福利导航,精品福利導航。

【cerita lucah budak】What Are Chiplets and Why They Are So Important for the Future of Processors

While chiplets have cerita lucah budakbeen around for decades, their use was historically limited to specific, specialized applications. Today, however, they are at the forefront of technology, powering millions of desktop PCs, workstations, servers, gaming consoles, phones, and even wearable devices worldwide.

In a matter of a few years, most leading chipmakers have embraced chiplet technology to drive innovation. It's now clear that chiplets are poised to become the industry standard. Let's explore what makes them so significant and how they're shaping the future of technology.

TL;DR: What Are Chiplets?

Chiplets are segmented processors. Instead of consolidating every part into a single chip (known as a monolithic approach), specific sections are manufactured as separate chips. These individual chips are then mounted together into a single package using a complex connection system.

This arrangement allows the parts that can benefit from the latest fabrication methods to be shrunk in size, improving the efficiency of the process and allowing them to fit in more components.

The parts of the chip that can't be significantly reduced or don't require reduction can be produced using older and more economical methods.

While the process of manufacturing such processors is complex, the overall cost is typically lower. Furthermore, it offers processor companies a more manageable pathway to expand their product range.

Silicon Science

To fully understand why processor manufacturers have turned to chiplets, we must first delve into how these devices are made. CPUs and GPUs start their life as large discs made of ultra-pure silicon, typically a little under 12 inches (300 mm) in diameter and 0.04 inches (1 mm) thick.

This silicon wafer undergoes a sequence of intricate steps, resulting in multiple layers of different materials – insulators, dielectrics, and metals. These layers' patterns are created through a process called photolithography, where ultraviolet light is shone through an enlarged version of the pattern (a mask), and subsequently shrunk via lenses to the required size.

The pattern gets repeated, at set intervals, across the surface of the wafer and each of these will ultimately become a processor. Since chips are rectangular and wafers are circular, the patterns must overlap the disc's perimeter. These overlapping parts are ultimately discarded as they are non-functional.

Once completed, the wafer is tested using a probe applied to each chip. The electrical examination results inform engineers about the processor's quality against a long list of criteria. This initial stage, known as chip binning, helps determine the processor's "grade."

For instance, if the chip is intended to be a CPU, every part should function correctly, operating within a set range of clock speeds at a specific voltage. Each wafer section is then categorized based on these test results.

Upon completion, the wafer is cut into individual pieces, or "dies," that are viable for use. These dies are then mounted onto a substrate, akin to a specialized motherboard. The processor undergoes further packaging (for instance, with a heat spreader) before it's ready for distribution.

The entire sequence can take weeks of manufacturing and companies such as TSMC and Samsung charge high fees for each wafer, anywhere between $3,000 and $20,000 depending on the process node being used.

"Process node" is the term used to describe the entire fabrication system. Historically, they were named after the transistor's gate length. However, as manufacturing technology improved and allowed for ever-smaller components, the nomenclature no longer followed any physical aspect of the die and now it's simply a marketing tool.

Nevertheless, each new process node brings benefits over its predecessor. It might be cheaper to produce, consume less power at the same clock speed (or vice versa), or have a higher density. The latter metric measures how many components can fit within a given die area. In the graph below, you can see how this has evolved over the years for GPUs (the largest and most complex chips you'll find in a PC)...

The improvements in process nodes provide a means for engineers to increase the capabilities and performance of their products, without having to use big and costly chips. However, the above graph only tells part of the story, as not every aspect of a processor can benefit from these advancements.

Circuits inside chips can be allocated into one of the following broad categories:

  • Logic – handles data, math, and decision-making
  • Memory – usually SRAM, which stores data for the logic
  • Analog – circuits that manage signals between the chip and other devices

Unfortunately, while logic circuits continue to shrink with every major step forward in process node technology, analog circuits have barely changed and SRAM is starting to reach a limit too.

While logic still forms the largest portion of the die, the amount of SRAM in today's CPUs and GPUs has significantly grown in recent years. For example, AMD's Vega 20 chip used in its Radeon VII graphics card (2019), featured a combined total of 5 MB of L1 and L2 cache. Just two GPU generations later, the Navi 21 chip powering the Radeon RX 6000 series (2020), included over 130 MB of combined cache – a remarkable 25-fold increase.

We can expect these to continue to increase as new generations of processors are developed, but with memory not scaling down as well as the logic, it will become increasingly less cost-effective to manufacture all of the circuitry on the same process node.

In an ideal world, one would design a die where analog sections are fabricated on the largest and cheapest node, SRAM parts on a much smaller one, and logic reserved for the absolute cutting-edge technology. Unfortunately, this is not practically achievable. However, there exists an alternative approach.

Divide and Conquer

In 1995, Intel introduced the Pentium II, a successor to its original P5 processor. What set it apart from other processors at the time was the design hidden beneath its plastic shield: a circuit board housing two chips. The main chip contained all the processing logic and analog systems, while one or two separate SRAM modules served as Level 2 cache.

While Intel manufactured the primary chip, the cache was sourced from external suppliers. This approach became fairly standard for desktop PCs in the mid-to-late 1990s, until advances in semiconductor fabrication allowed logic, memory, and analog systems to be fully integrated into a single die.

While Intel continued to dabble with multiple chips in the same package, it largely stuck with the so-called monolithicapproach for processors – i.e., one chip for everything. For most processors, there was no need for more than one die, as manufacturing techniques were proficient (and affordable) enough to keep it straightforward.

However, other companies were more interested in following a multi-chip approach, most notably IBM. In 2004, it was possible to purchase an 8-chip version of the POWER4 server CPU that comprised four processors and four cache modules, all mounted within the same body (known as a multi-chip moduleor MCM approach).

Around this time, the term "heterogeneous integration"started to appear, partially due to research work done by DARPA. Heterogeneous integration aims to separate the various sections of a processing system, fabricate them individually on nodes best suited for each, and then combine them into the same package.

Today, this is better known as system-in-package(SiP) and has been the standard method for equipping smartwatches with chips from their inception. For example, the Series 1 Apple Watch houses a CPU, some DRAM and NAND Flash, multiple controllers, and other components within a single structure.

A similar setup can be achieved by having different systems all on a single die (known as an SoC or system-on-a-chip). However, this approach doesn't allow for taking advantage of different node prices, nor can every component be manufactured this way.

For a technology vendor, using heterogeneous integration for a niche product is one thing, but employing it for the majority of their portfolio is another. This is exactly what AMD did with its range of processors. In 2017, the semiconductor giant introduced its Zen architecture with the launch of the single-die Ryzen desktop CPU. Just a few months later, AMD debuted two multi-chip product lines: Threadripper and EPYC, with the latter featuring configurations of up to four dies.

With the launch of Zen 2 two years later, AMD fully embraced HI, MCM, SiP – call it what you will. They shifted the majority of the analog systems out of the processor and placed them into a separate die. These were manufactured on a simpler, cheaper process node, while a more advanced one was used for the remaining logic and cache.

And so, chiplets became the buzzword of choice.

Smaller is Better

To understand exactly why AMD chose this direction, let's examine the image below. It showcases two older CPUs from the Ryzen 5 series – the 2600 on the left, employing the so-called Zen+ architecture, and the Zen 2-powered 3600 on the right.

The heat spreaders on both models have been removed, and the photographs were taken using an infrared camera. The 2600's single die houses eight cores, though two of them are disabled for this particular model.

This is also the case for the 3600, but here we can see that there are two dies in the package – the Core Complex Die (CCD) at the top, housing the cores and cache, and the Input/Output Die (IOD) at the bottom containing all the controllers (for memory, PCI Express, USB, etc.) and physical interfaces.

Since both Ryzen CPUs fit into the same motherboard socket, the two images are essentially to scale. On the surface, it might seem that the two dies in the 3600 have a larger combined area than the single chip in the 2600, but appearances can be deceiving.

If we directly compare the chips containing the cores, it's clear how much space in the older model is taken up by analog circuitry – it's all the blue-green colors surrounding the gold-colored cores and cache. However, in the Zen 2 CCD, very little die area is dedicated to analog systems; it's almost entirely composed of logic and SRAM.

The Zen+ chip has an area of 213 mm2 and was manufactured by GlobalFoundries using its 12nm process node. For Zen 2, AMD retained GlobalFoundries' services for the 125 mm2 IOD but utilized TSMC's superior N7 node for the 73 mm2 CCD.

The combined area of the chips in the newer model is smaller, and it also boasts twice as much L3 cache, supporting faster memory and PCI Express. The best part of the chiplet approach, however, was that the compact size of the CCD made it possible for AMD to fit another one into the package. This development gave birth to the Ryzen 9 series, offering 12 and 16-core models for desktop PCs.

Even better, by using two smaller chips instead of one large one, each wafer can potentially yield more dies. In the case of the Zen 2 CCD, a single 12-inch (300 mm) wafer can produce up to 85% more dies than for the Zen+ model.

The smaller the slice one takes out of a wafer, the less likely one is going to find manufacturing defects (as they tend to be randomly distributed across the disc), so taking all of this into account, the chiplet approach not only gave AMD the ability to expand its portfolio, it did so far more cost-effectively – the same CCDs can be used in multiple models and each wafer produces hundreds of them!

But if this design choice is so advantageous, why isn't Intel doing it? Why aren't we seeing it being used in other processors, like GPUs?

Following the Lead

To address the first question, Intel has been progressively adopting chiplet technology as well. The first consumer CPU architecture they shipped using chiplets is called Meteor Lake. Intel's approach is somewhat unique though, so let's explore how it differs from AMD's approach.

Using the term tilesinstead of chiplets, this generation of processors split the previously monolithic design into four separate chips:

  • Compute tile: Contains all of the cores and L2 cache
  • GFX tile: Houses the integrated GPU
  • SoC tile: Incorporates L3 cache, PCI Express, and other controllers
  • IO tile: Accommodates the physical interfaces for memory and other devices

High-speed, low-latency connections are present between the SoC and the other three tiles, and all of them are connected to another die, known as an interposer. This interposer delivers power to each chip and contains the traces between them. The interposer and four tiles are then mounted onto an additional board to allow the whole assembly to be packaged.

Unlike Intel, AMD does not use any special mounting die but has its own unique connection system, known as Infinity Fabric, to handle chiplet data transactions. Power delivery runs through a fairly standard package, and AMD also uses fewer chiplets. So why is Intel's design as such?

One challenge with AMD's approach is that it's not very suitable for the ultra-mobile, low-power sector. This is why AMD still uses monolithic CPUs for that segment. Intel's design allows them to mix and match different tiles to fit a specific need. For example, budget models for affordable laptops can use much smaller tiles everywhere, while AMD only has one size chiplet for each purpose.

The downside to Intel's system is that it's complex and expensive to produce (which has lead to different kind of issues). Both CPU firms, however, are fully committed to the chiplet concept. Once every part of the manufacturing chain is engineered around it, costs should decrease.

When it comes to GPUs, they contain relatively little analog circuitry compared to the rest of the die. However, the amount of SRAM inside has been steadily increasing. This trend prompted AMD to leverage its chiplet expertise in the Radeon 7000 series, with the Radeon RX 7900 GPUs featuring a multi-die design. These GPUs include a single large die for the cores and L2 cache, along with five or six smaller dies, each containing a slice of L3 cache and a memory controller.

By moving these components out of the main die, engineers were able to significantly increase the amount of logic without relying on the latest, most expensive process nodes to keep chip sizes manageable. While this innovation likely helped reduce overall costs, it did not significantly expand the breadth of AMD's graphics portfolio.

Currently, Nvidia and Intel consumer GPUs are showing no signs of adopting AMD's chiplet approach. Both companies rely on TSMC for all manufacturing duties and seem content to produce extremely large chips, passing the cost onto consumers.

That said, it is known that both are actively exploring and implementing chiplet-based architectures in some of their GPU designs. For example, Nvidia's Blackwell data center GPUs utilize a chiplet design featuring two large dies connected via a high-speed interlink capable of 10 terabytes per second, effectively functioning as a single GPU.

Getting 'Moore' with Chiplets

No matter whenthese changes occur, the fundamental truth is that they musthappen. Despite the tremendous technological advances in semiconductor manufacturing, there is a definite limit to how much each component can be shrunk.

To continue enhancing chip performance, engineers essentially have two avenues – add more logic, with the necessary memory to support it, and increase internal clock speeds. Regarding the latter, the average CPU hasn't significantly altered in this aspect for years. AMD's FX-9590 processor, from 2013, could reach 5 GHz in certain workloads, while the highest clock speed in its current models is 5.7 GHz (with the Ryzen 9 9950X).

Intel's highest-clocked consumer CPU is the Core i9-14900KS, featuring a maximum turbo frequency of 6.2 GHz on two cores. This "special edition" processor holds the record for the fastest out-of-the-box clock speed among desktop CPUs.

However, what haschanged is the amount of circuitry and SRAM. The aforementioned AMD FX-9590 had 8 cores (and 8 threads) and 8 MB of L3 cache, whereas the 9950X boasts 16 cores, 32 threads, and 64 MB of L3 cache. Intel's CPUs have similarly expanded in terms of cores and SRAM.

Nvidia's first unified shader GPU, the G80 from 2006, consisted of 681 million transistors, 128 cores, and 96 kB of L2 cache in a chip measuring 484 mm2 in area. Fast forward to 2022, when the AD102 was launched, and it now comprises 76.3 billion transistors, 18,432 cores, and 98,304 kB of L2 cache within 608 mm2 of die area.

In 1965, Fairchild Semiconductor co-founder Gordon Moore observed that in the early years of chip manufacturing, the density of components inside a die was doubling each year for a fixed minimum production cost. This observation became known as Moore's Law and was later interpreted to mean "the number of transistors in a chip doubles every two years", based on manufacturing trends.

Moore's Law has served as a reasonably accurate representation of the semiconductor industry's progress for nearly six decades. The tremendous gains in logic and memory in both CPUs and GPUs have largely been driven by continuous improvements in process nodes, with components becoming progressively smaller over time. However, this trend cannot can't continue forever, regardless of what new technology comes about.

Rather than waiting for these physical limits to be reached, companies like AMD and Intel have embraced chiplet technology, exploring innovative ways to combine these modular components to sustain the creation of increasingly powerful processors.

Decades in the future, the average PC might be home to CPUs and GPUs the size of your hand. But, peel off the heat spreader and you'll find a host of tiny chips – not three or four, but dozens of them, all ingeniously tiled and stacked together. The dominance of the chiplet has only just begun.

Keep Reading. Explainers at TechSpot

  • Meet Transformers: The Google Breakthrough that Rewrote AI's Roadmap
  • Why Are Modern PC Games Using So Much VRAM?
  • Is the Ryzen 9800X3D Truly Faster for Real-World 4K Gaming?
  • Number Representations in Computer Hardware, Explained

0.302s , 9842.7421875 kb

Copyright © 2025 Powered by 【cerita lucah budak】What Are Chiplets and Why They Are So Important for the Future of Processors,Info Circulation  

Sitemap

Top 亚洲另类自拍小说图片 | 成人免费的性色视频网站 | 九九精品视频一区二区三区 | 美女性生活毛片 | 婷婷色香五月激情综合2020 | 日本啪啪a片免费还看aⅴ | av无码不卡一区二区三区 | 亚洲A片一区日韩精品无码 亚洲A无码综合A国产AV中文 | 亚洲精品精华液一区 | 国产成人精品日本亚洲1 | 亚洲欧美日韩国产一区 | 波多野结衣中文久久精品伊人 | 亚洲 小说 欧美 另类 社区 | 六月丁香在线播放 | sss欧美一区二区三区 | 亚洲中文字幕无码亚洲成a人片 | 麻豆精品无人区码一二三区别是如何影响商品管理和购物体验 | 久久频这里精品99香蕉久网址 | 麻豆成人91精品二区三区 | 人妻少妇中文字幕久久√一 | 久久久久久国产精品视频 | 国产成人综合亚洲欧美在线 | xxxx日韩av| 999精产国品一二三产区区别 | 国产a级一级久久毛片 | 日韩欧美福利一区二区中字永久 | 国产精品国产福利国产秒拍一区二区三区四区精品视频 | 99久久精品国产亚洲麻豆 | 日本福利网址 | 欧美人与动牲交免费看 | 亚洲国产精品一区二区国产 | 久久精品黄aa片一区二区三区 | 精品在线观看免费 | 六月丁香七月婷婷 | 精品日韩国产一区二区三区 | 国产高清在线精品一区二区 | 五月丁香综合缴情六月 | av狼新人开放注册区 | 丁香五月天激情婷婷五月天 | 国产suv一区二区:新车型发布引发市场热议 | 亚洲av无码成人专区片在线观看 | 国产人妖综合 | 99久久亚洲国产精品免费 | 玖玖在线资源站 | 亚洲色无码A片一区二区麻豆 | 国产深夜视频在线观看免费 | 亚洲午夜AV久久久精品影院色戒 | ww亚洲无码免费在线观看 | 日本人妻精品免费视频 | 亚洲AV在线无码播放毛片浪潮 | 欧美日韩一区二区三区四区 | 乱喷在线观看 | 国产三级视频在线观看网址 | 农民人伦一区二区三区 | 国产精品乱码色情一区二区视频 | 成人毛片18女人毛片免费看视频 | 国产日韩精品福利视频综合一区二区三区四区 | 亚洲三级无码经典三级 | 狠狠色狠狠色综合日日五 | 久久露脸国产精品 | www精品一区二区三区四区 | 亚洲女线av影视宅男宅女天堂 | 任你搞视频这里只有精品 | 国产成人精品视频午夜 | 中文字幕精品一区二区三区 | 在线视频一二三区 | 国产成人自拍视频 | 2024亚洲va在线va天堂va国产 | 国产顶级疯狂5p乱在线播放 | 精品人妻少妇一区二区三区n | 91麻豆精品一二三区在线国语 | 国产精品女 | a天堂视频| 在线精品国产一区二区三区 | 精品综合久久久久久蜜月 | 久久久久国产精品免费 | 欧美亚洲不卡一区二区三区 | 国产无码高清一二三四区 | 久久中文字幕不卡一二区 | 亚洲成人成综合在线播放 | 精品人妻无码视频中文字幕一区二区三区 | 成人性生交大片免费看R链接 | 国产av无码片毛片一级久色欲 | 精品韩国av无码一区二区三区 | 一区二区三区四区免费毛片 | 吕守备粗大进出黄蓉的秘密 | 美女视频大全视频a免费九 美女视频黄a视频全免费网站色窝 | 亚洲国产初高中生女av | 国产一卡2卡3卡4卡网站动漫 | www.日本成人在线观看 | 91免费版视频在线观看 | 国产日韩久久久精品影院首页 | 人妻一区二区三区四 | 国产单亲乱子伦视频 | 东京热人妻中文无码av | 国产高清无码在线观看视频 | 91亚洲自偷手机 | 国产91无套粉嫩白浆在线 | 久久精品亚洲一区二区 | a国产精品一区第二页 | 麻豆精品亚洲一区 | 91性高湖久久久久久精品中文字幕 | 吕守备粗大进出黄蓉的秘密 | 人妻无码精品久久专区 | 日韩好片一区二 | 青青草国产成人99久久 | 国产99久久久国产精品免费高清 | 99久久久无码 | 女自慰喷水免费观看www久久www | 日韩永久精品一区二区p | 亚洲色婷婷久久精品AV蜜桃久久 | 成人爽a毛片免费 | 国产人妻人伦精品潘金莲 | 亚洲一区日韩二区欧美三区 | 看全色黄大色黄大片爽一次 | a码片全部免费无码播放 | 亚洲偷自拍国综合色帝国 | 国产精品视频第一区二区三 | 超清视频在线观看国产成人 | 欧美精品无码一区二在线 | 成人国产精品电影 | 黄网站色视频免费看无下截 | 成人欧美电影一区二区三区 | 亚洲国产成人综合在线电影二 | 国产精品亚洲精品久久品 | 久久精品少妇黄色视频 | 九月婷婷人人澡人人爽人人爱 | 扒开双腿被两个男人玩弄视频 | 亚洲欧美色中文字幕在线 | 人人干夜夜 | 1024亚洲天堂 | 青青青国产免费手机频在线观看 | www日本高清视频 | 日本高清网 | 国产视频一区二区三区四区五区 | 亚洲国产欧美日韩另类 | 日本网站在线播放 | 中文字幕国内精品一区二区 | 欧美小泬xxxbbb视频 | 成人免费无码大片a毛片 | 成人欧美一区二区三区黑人麻豆 | 日韩欧美国产高清在线三区 | 国产成人亚洲精品另类动态 | 欧美日韩在线免费观 | 国产成人久久精品一区二区三 | 国产伦精品一区二区三区竹菊视频视频18亚洲被av | 国产精品点击进入在线影院高清 | 亚洲精品久久蜜臀AV色欲 | 国产灌醉视频一区二区 | 国产精品无码免费播放在线观看 | 乱人伦精品视频在线观看 | 五十路在线视频 | 日韩av无码中文无码不卡电影 | 18黑白丝水手服自慰喷水网站 | chinese熟女老女人hd | 中文字幕精品久久 | 亚欧国产国产制服无码视频 | 91女神精品系列在线观看66 | 精品久久久久久久中文字 | 777午夜精品久久AV蜜桃小说 | 精品色拍自偷亚洲 | 天堂国产一区二区三区四区不卡 | 久久精品国产99精品亚洲色戒 | 99久久精品国产国产毛片 | 午夜AV亚洲一码二中文字幕青青 | 色偷偷亚洲第一成人综合网址 | 男人天堂2024亚洲男人天堂 | 无码人妻精品国产婷婷 | 人妻少妇被粗大爽9797PW | 2024国产成人精品国产 | 国产91欧美一区二区精品 | 韩国理仑片色情在线观电影 | 久久国产乱子乱免费无码 | a网站在线观看免费网站 | 人人在线碰碰视频免费 | 欧美日韩国产不卡在线观看 | 黑人与亚洲女人 | 91久久人澡人人添人人爽 | 日本xx免费看视频mm | 国产专区日韩精品欧美色 | 国产三级精品三级网站 | 国产精品久久久久流白浆软件 | 国产三级日本三级日产 | 国产成人AV | 丁香五月情在线三级电影 | 国产v综合v亚洲欧美大另类 | 国产精品视频一区牛牛视频 | 91天堂一区二区 | 日韩一区二区三区射 | 亚洲精品一区国产 | 海角国精产品一区一区三区糖心 | 欧美日韩不卡合集视频 | 久久久久亚洲精品天堂 | 久久精品熟妇丰满人妻99 | 波多野结衣乳巨码无在线播放bd国语手机免费观看 | 亚洲国产精品无损 | 久久国产精品无码一区二区三区 | 国产麻豆精品视频 | 欧美一区二区三区免费播放 | 久久精品国产成人Av | 狼友视频国产精品首页 | 久久天天躁狠狠躁夜夜躁2024 | 欧美成人a√在线一区二区 欧美成人AAA毛片 | 2024久久精品免费观看 | 91桃色午夜福利国产 | 全黄H全肉短篇禁乱NP慕浅浅 | 国产每日更新 | 成人精品一区二区三区中文 | 欧美亚洲国产精品一区 | 欧美中文字幕亚洲精品 | 中文字幕在线精品视频9 | 欧美日韩在线播放 | 禁欲总裁被C呻吟双腿大张 禁止的爱6浴室吃奶中文字幕 | 国精产品999一区二区三区有限 | 国产成人精品一区二区三区无码 | 国产精品 同事 在线 视频 | 国产精品剧情原创麻豆国产 | 色窝窝无码一区二区三区 | 中文字幕 欧美精品 第1页 | 精品国产90后在线观看 | 亚洲国产精品一区 | 2024国产麻豆剧传媒最 | 国产精品99欧美在线一区二区 | av无码久久久久不卡免费网站 | 国产av一区二区三区传媒短片 | 99久久无码一区人妻a片 | 亚洲一区二区三区无码中文字幕 | 日韩a无v码在线播放免费 | 久久久一区二区三区 | 无码日韩精品一区二区免费 | 69堂无码国产精品色四婷婷专区 | 狠狠色噜噜综合社区 | 综合久久久久久综合久 | 国产91色在线亚洲 | httpwww色午夜com日本 | 天天日天天靠 | 女人喷射视频在线播放你了 | 人妻系列中文字幕无码专区 | 精品久久久亚洲精品中文字幕 | 国产女同玩sm调教在线观看 | 日韩欧美人妻一区二区三区 | 久久国产午夜精品一区二区三区 | 久久久亚洲精品免费 | 中文字幕中文乱码欧美一区二区 | 六月色香婷婷一区二区三区 | 国产精品视频久久久久久 | 91久久久久国产精品嫩草影院 | 国产激情一区二区三区成人 | 日本不卡高清免费mv | 亚洲日韩在线观看 | 毛片成人永久免费视频 | 精品无码久久久久久久久水蜜桃 | 国产一线二线三线www | 日韩精品免费观看 | 美女视频大全视频a免费九 美女视频黄a视频全免费网站色窝 | 麻豆妓女爽爽一区二区三 | 韩国男人二区高清国精品人妻无码一区二区三区在线 | 韩国精品视频一区二区 | 国产乱子经典视频在线观看 | 玩弄丰满少妇xxxxx性多毛 | 波多野结衣好大好紧好爽 | 99久久人妻 | 台湾一级毛片永久免费 | 国产成人亚洲精品77 | 欧美黄| 国产熟妇精品高潮一区二区三区 | 国产伦一区二区三区精品免费 | 狠狠色狠狠色综合日日小说 | 亚洲另类国产欧美一区二区 | 无码精品人妻一区二区三区免费看 | 久久免费精彩视频 | a级免费视频 | 午夜西瓜视频在线观看 | 精品国产三级在线观看 | 福利一区二区三区视频午夜观看 | 国产成人无码精品久久二区三区 | 波多野结衣美乳人妻 | 无码高潮少妇多水 | 美女裸体视频一二区 | 国产精品白丝jk黑 | 波多野吉衣人妻无码潮喷av | 无码av人妻一区二区三区四区 | 精品久久免费一区二区三区四区 | 亚洲精品国产第一区二区尤物 | 日本人成精品视频在线 | 亚洲巨乳巨臀在线一区二区BBW | 美女牲交视频一级毛片无遮挡 | a级片免费网站 | 亚洲精品欧美在线 | 欧美日韩激情在线观看不卡 | 一区二区在线中文字幕高清 | 国产啪亚洲欧美精品无码 | 中文字幕在线观看免费视频 | 伦理电影院 | 狠狠色噜噜狠狠狠狠色综合久 | 国产v亚洲v天堂无码精品 | 欧美精品成人a在线观看 | 一本久久精品一区二区三区 | 亚洲欧美国产制服日本一区二区 | 久久精品综合国产二区 | 亚洲国产成人精品无码区在线观看 | 50路熟妇乱青青草免费成人福利视频 | 亚洲精品制服丝袜四区 | 91精品国产高清久久久久 | 无码av片在线观看 | 色情.WWW成人天堂 | 国产精品白丝av嫩草影院 | 麻豆国产在线精品欧美日韩电影 | 久久久久久久久久久久精品视频 | 无码丰满熟妇一区二区 | 成在线人免费无码高潮喷水 | 国产A色情成人片 | 欧美亚洲另类久久综合 | 欧美精品一区二区三区在线 | 国产第一二三区日韩在线观看 | 精品久久久影院 | 国产精品后入内射日本在线观看 | 99久久无码一区人妻国产 | 欧美精品18videosex性欧美 | 日日摸天天摸人人看 | 亚洲丁香色婷婷综合欲色啪 | 无码人妻精品一区二区三区蜜桃 | 国产熟妇另类久久久久 | 五月丁香花 | 亚洲一级aa无 | www欧美天天直播午夜精品一区 | 日本一本二本大道在线视频网站 | av片亚洲国产男人的天 | 国产精品人人做人人爽人人添 | 激情综合婷婷丁香五月合色字幕 | 日韩中文字幕 | 天天操夜夜操B天天拍 | 欧美日韩免费大片 | 色之综合网 | 国产成人综合精品 | 日本三级片在线观看 | 五月天国产成人av免费观看 | 亚洲欧美另类激情 | 成人精品视频在线观看 | 欧美国产一区二区三区激情无套 | 欧美日韩国产一区国产二区 | 国产成人精品女人久久久国产suv精品一区二区6 | 久久久久亚洲精品无码网站 | 撸撸撸中文网 | 欧美日韩精品免费一区二区三区 | 99精品视频一区在线视频免费观看 | 日本三级久久 | 国产欧美一区二区三区日韩 | 成年美女黄网站色大 | 91香蕉视频免费 | 国产精品伦理一区二区三区 | 国产网红无码精品视频 | 在线视 欧美 亚洲日本 | hd人妖视频一区二区 | 调教二区的影院xxxx精品中文字幕av人妻少妇一区二区 | 国产波霸巨爆乳无码视频在线 | 四虎影视最新的2024网址 | 波多野结衣在线播放 | 亚洲欧美日韩国产一区 | 国产中文一区二区苍井空 | 亚洲精品无码AAAAAA片 | 国产1988精品A片 | 九九久久久久午夜精选 | 国产精品美女久久久久久免费 | 狠狠色丁香久久婷婷 | 久久久国产99久久国产久一 | 欧美性猛交xxxx黑人 | 老师久久高潮视频 | 爱豆直击国产精品原创av片国产 | 国产91福利久久aⅴ无码 | 97久精品国产片一区二区三区 | 无码专区人妻系列日韩精品少妇 | 亚洲国产成人高清在线观看 | 国产中文字幕亚洲一区二区三区 | 免费观看又色又爽又黄的校园 | 亚洲国产精品专区欧美 | 免费国产永久在线播放 | 亚洲欧美视频一级 | 色偷拍亚洲国产大姐 | 一本道久久综合狠狠躁 | 免费羞羞午夜爽爽爽视频 | 东北高大肥胖丰满熟女 | 精品综合久久久久97 | 久久国产精品福利一区二区三区 | 精品国产熟女成人av | 亚洲国产美女精品久久久 | 欧美笫一页 | 日韩精品免费一区二区三区 | 成人性生交A片免费网 | 日本不卡一区二区三区在线 | 99热欧美 | 国产老女人免费观看黄A∨片 | 国产三级色欲视频 | 99久久免费国产精品成人一区二区 | 色欲久久精品AV无码 | 久久精品动漫一区二区三区 | 丁香啪啪综合成人亚洲 | 熟女五月天婷婷 | 亚洲欧洲另类日韩 | 99久久免费精品 | 日韩在线中文字幕欧美 | 国产成人夜色高潮福利影视 | 欧美综合区自拍亚洲综合天堂 | 女人下边被添全过程A片图片 | 香蕉天天综合网日韩欧影视 | 国产在线观看自拍 | 国产精品亚洲香蕉第五区 | 伦理片琪琪影院免费观 | 国产福利不卡在俺也去亚洲 | 免费观看黄A片在线观看 | 久久久久成人国产av | 久久成人免费视频天天看 | 男人猛躁进女人毛片A片 | 国产成人久久一区二区三区 | 国产成人三级电影在线观看 | 国产老女人精品视频网站 | 国产乱女乱子视频在线播放 | 日本毛片高清免费视频 | 五十六十熟女猛烈交尾A片一 | 国产成人18黄网站在线观看 | 欧美国产日韩二区 | 亚洲国产中文精品无码久久 | 性啪啪chinese东北女人 | 日本人妻人人人澡人人爽欧美a级在线观看 | 天天在线高清黄页 | 国产在线无码一区二区三区视频 | 成人无码A片视频播放 | 亚洲中文字幕久久精品码 | 国产怡春院无码一区二区 | heyzo无码综合国产精品 | 久久精品欧美曰韩精品 | 在线无码免费观看 | 中文亚洲成a人片在线观看 中文亚洲乱码 | 一区二区视频在线观看入口 | 精品99久久一a毛免费观看 | 精产国品一二三产区999999 | 久久久久亚洲av无码专区喷水 | 国产精品乱码一区二区三 | 欧美亚洲天堂网 | 日本人六九视频 | 色欲AV亚洲情无码AV蜜桃 | 亚洲国产成人高清在线播放 | 久久久高清日本道免费观看 | 欧美日韩一区精品视频一区二区 | 亚洲制服丝袜一区二区三区 | 国产片av国语在线 | 色妺妺av爽爽影院 | 亚洲av永久无码精品放毛片 | 一区二区三区免费看A片 | 久久综合五月婷婷 | 苍井空无码播放电车 | 91国内免费久久久久久久久久 | 亚洲老熟女AV一区二区在线播放 | 国产a精品区二 | 国产互换人妻好紧hd无码 | 91亚洲一区二区在线观看不卡 | 丁香五月情在线三级电影 | 毛片黄在线看免费 | 狠狠色丁香久久婷婷综合图片 | 亚洲午夜精品久久久久久抢 | 久久婷婷午色综合夜啪 | 亚洲高清无码在线 视频 | a亚洲在线观看不卡高清 | 波多野结衣一区二区三区未删减版在线观看 | 18国产精品| 成人网站精品久久久 | 日本aⅴ精品一区二区三区日 | 麻豆短视频传媒网站 | 成人av片无码免费天天看 | a级毛片部免 | 亚洲欧美另类久久久精品能播放的 | 亚洲中文字幕精品在线视频 | 精品人妻一区二 | 精品国产人妻一区二区三级 | 国产伦精品一区二区三区网站 | 久久久综合视频 | 一本大道香蕉视频在线观看 | 久久精品国产亚洲av麻豆蜜芽 | 亚洲欧美日产国产一区二区 | 国产av日韩一区 | 国产精品一区二区三乱码 | 精品一区二区三区中文在线 | 国产成人黄色网站视频在线观看 | 日韩亚洲欧美中文字幕在线观看 | 热伊人99re久久精品最新地 | 理论电影无码在线观看 | 爆乳无码一区二区在线观看 | 国产白丝无码视频在线观看 | 国内精品久久久久久久小说 | 欧美日韩激情国产精品一区二 | 二区欧美无遮挡中文字幕人成人 | 无码日韩一二三按摩 | 亚洲日韩国产精品乱-久 | 亚洲欧美综合第一页 | 波多野结衣一区二区三区av免 | 91人妻无码精品蜜桃 | 日韩精品成人动漫 | 国产日韩精品一区二区三区在线观 | av无码东京热亚洲男人的天堂 | 亚洲AV秘 无码一区二区久久 | 国产乱子伦在线观看 | 亚洲欧美一区二区久久 | 黑巨茎大战美女在线播放 | 97人妻久久久精品系列A片 | 午夜无码毛片AV久久久久久 | 波多野结衣爽到高潮漏水大喷视频 | 日韩国产欧美在线观看一区二区 | 91精品国产高清一区二区三蜜臀 | 日本无码成人深夜无码 | 国产精品一区二区制服 | 国产女同视频 | 欧美日韩人妻精品一区二 | 国产无人区码一码二码三MBA | 老色批影院 | 99久久夜色精品国产网站 | 亚洲无码男人影院黄色 | a欧美亚洲另类制服丝袜 | 国产xxxx | 麻生希作品日韩剧手机在线播放 | 亚洲午夜高清 | 国产欧美日韩一区二区免费 | 香婷婷一区二区精品久久 | 99偷拍盗摄偷窥精品视频 | 法国啄木乌av片在线播放 | 美国毛片网 | 国产麻豆福利 | 韩国美女福利专区一区二区 | 熟女俱乐部五十路二区av | 国产三级电影在线观看一区二区三区 | 国产丰满老熟女重口对白 | 免费无码又爽又刺激高潮视频日本 | 久久精品国产亚洲av麻豆图片 | 人人爽人人爽人人片av免费 | 97精品国产综合久久 | 色窝窝免费播放视频在线 | 清纯唯美制服欧美动漫 | 91精品国产制服啪啪无码 | 国产欧美自拍偷怕日韩亚洲 | free性日本免费观看 | 无码aⅴ一区二区三区a片 | 国产伦精品一区二区三区视频欲 | 四虎影视永久地址www成人 | 成人av手机在线观看 | 六月婷婷激情 | 无码精品日韩中文字幕 | 国产成人精品影院狼色在线 | 高黄H文各种姿势PLAY道具1V1 | 国产人妻人伦精品无码麻豆 | 久久久国产精品免费A片3D | a国产亚洲欧美在线观看 | 欧美、另类亚洲日本一区二区激情妻 | 无码人妻一区二区三区av | 亚洲精品福利一区二区在线观看 | 欧美色综合高清免费 | 国产综合精品中文字幕免费 | 亚洲欧美乱综合图片区小说区 | 婷婷我也去俺也去狠狠爱 | 国产伦精品一区二区三区免费观看 | 少妇饥渴放荡的高潮喷水 | 色大18成网站在线观看 | 天美文化传媒mv免费入口高清 | 欧美日韩综合在线精品 | 欧美人与禽 | 欧美午夜小视频 | av香港经典三级级在线 | 中文在线观看热码视频 | 国产高潮流白浆喷水 | 国产高清无码不卡顿在线观看 | 91一本大道波多野吉衣 | 丰满的日本护士 | 九九热久久只有精品2 | 丝袜美腿欧美一区在线观看 | 青青青国产精品一区二区 | 国产午夜AV亚洲欧美小说 | 91精品无码国产在线观看一区 | 亚洲国产另类久久久精品小说 | 无码不卡中文字幕 | 伊人蕉久中文字幕无码专区 | 国产人妻人伦AV又粗又一长 | 国产精品大陆在线视频 | 一级毛片视屏 | 精品一区二区三区四区久久 | 天天欧美综合久久不卡 | 日韩精品人妻无码久久影院 | 国产成人精品第一区二区三区官网版手机版 | WWW色情成人免费视频软件 | 国产午夜爽爽窝窝在线观看 | 亚洲天堂一级av免费毛片 | 国产av国片精品青草社区最新 | 人妻丰满熟妇V无码区A片免费看 | 精品三级久久久久久久 | 亚洲国产美女精品久久久久 | 亚洲午夜精品久久久久 | 无码av一区二区三区 | 国产高潮抽搐喷浆视频 | 国内精品久久久影院 | 黄网站在线观看视频 | 无码爆乳超乳中文字幕在线 | 国产按摩无码在线观看 | 黑巨茎大战俄罗斯美女后宫 | 久久久久无码av色戒 | 亚洲熟女www一区二区三区 | 苍井空无码换线观看 | 国产丰满人妻一区二区三区 | a级国产电影在线 | 精品丰满人妻无套内射 | 久久国产人妻一区二区中国下载永久久久 | 亚洲国产成人久久一区久久 | 色偷拍亚洲偷自拍 | 波多野结av衣东京热 | 亚洲中文aⅴ中文字幕在线 亚洲中文精品久久久久久蜜臀 | 无码乱码毛片国产 | 国产毛片一区二区精品 | 中国一级操逼录像片 | 99久久综合国产精品免费 | 国产午夜理论片YY8840Y | 国产成人高清视频免费播放 | av无码国产一区二区三区 | 精品日韩国产一区二区三区 | 性xxxxxxx欧美胖老太肥肥 | 在线观看国产日韩 | 国产欧美日本一区二区三区免费 | 高清亚洲无码久久 | 中文精品人人永久免费嫩草 | 成人免费无遮挡无码黄漫视频 | 亚洲熟妇熟女久久精品综合一 | 麻豆最新国产剧情AV原创免费 | 久久久日韩精品一区二区 | 日韩成人毛片高清视频免费看 | 怡春院院日本一区二区久久 | 久久精品人妻一区二区蜜柚 | 日本欧美亚洲中文在线观看 | 四虎影视在线看免费 720p | 中文字幕在线有码 | 成人男女av大片在线观看 | chinese国产熟妇露脸视频 | 精品国内自产拍在线视频 | 18禁止观看免费私人影院 | 国产午夜精品理论片在线 | 真人作爱视频免费网站 | 国内精品视频在线不卡一区 | 无码内射成人免费喷射 | 日韩精品在线播放 | 午夜精品久久久久久久久 | 欧美国产综合日韩一区二区 | 国产啪视频免费观看视频 | 国产野外无码人妻精品一区二区三区 | 久久综合香蕉久久久久久久 | 国产午夜婷婷精品无码A片 国产午夜小视频 | 东京热无码中文字幕av专区 | 亚洲精品爆乳一区二区H | 国产精品美女久久久久久久 | 国产成人调教视频在线观看 | 亚洲国产成人aⅴ毛片奶水 亚洲国产成人aⅴ片在线观看 | 少妇人妻偷人精精品系列 | 亚洲日韩国产成在线发布一区二区三区 | 国产精品无码日韩久久久久 | 狠狠狠色丁香婷婷综合久久五月 | 国产午夜三区视频在线 | 91精品人妻一| 对白精彩国产在线视频 | 2024天天干天天操 | 东京热无码人妻一区二区三区av | 一区二区视频免费 | 欧美在线观看一区二区三区 | 欧美另类在线视频 | 毛片免费看一区二区三区 | 91精品国产一区二区无码 | 国产精品 中文字幕 亚洲 欧美 | 亚洲无码男人影院黄色 | 久久久91精品国产一区二区三区 | 日本欧美一区二区三区在线观看 | 成人xxx手机福利盒子在线 | 好硬啊进去太深了A片 | 伦理片免费观在线看 | 无码aⅴ一区二区三区a片 | 噜噜噜噜天天狠狠 | 国产精品久久久久久影院 | 99好久被狂躁A片视频无码 | 国内精品久久人妻无码国 | 波多野结衣一区二区 | 日本熟妇japanese丰满 | 精品一区二区三区在线观看l | 久久久人妻一区精品久久久 | 亚洲综合伦理一区 | 国产女人喷潮视频免费 | 91精品国产成人 | 久久综合欧美亚洲第一页 | 人妻aⅴ中文字幕无码 | 丰满熟女人妻大乳波多野吉衣 | 麻豆视传媒官网进入 | 无码人妻精品一区二区三区久久 | 精品人妻一区二区三区浪 | 无码人妻一区二区三区A片 无码人妻一区二区三区精品 | 久久久久久精品中文无码 | 久久99精品久久久久久婷婷 | 精品人妻系列无码人妻免费视 | 久久精品视频55 | 成人欧美视频在线观看播放 | a级国产乱理伦片在线 | 亚洲网友自拍 | 精品国产男人的天堂在线毛黄 | 忘忧草在线影院日本图片 | 紧身裙女教师波多野结衣 | 国产精品乱码在线观看 | 国产免费无码成人A片在线观看 | 2024四虎影视最新免费 | 日韩av无码一区二区三区不卡 | 亚洲制服丝袜一区二区三区 | 麻豆精品国产自产在线观看一 | 久久精品无码一区二区综合 | 国产精品卡1在线观看 | 欧美18.19| 日韩福利在线观看 | 国产精品裸体一区二区三区 | 日本黄无码不卡高清在线观看 | 国产裸舞在线一区二区 | 国产亚洲精品久久久久久 | 国产精品久久国产精品99 gif | 伦理片午夜在线视频 | 美女露出尿口让男人揉动态图网站 | 精品国产aⅴ一区二 | 亚洲成人日韩六十熟妇乱子伦视频 | 国产精品55夜色66夜色 | a级毛片免费观看完整 | 高清免费视频 | 不卡国产| 一本大道一卡二卡三卡四卡在线观 | 国产欧美动漫日韩在线一区二区三 | 国产精品一区二区免费在线 | 久久伊人中文无码 | 精品日日夜夜亚洲国产永久 | 很黄很爽无遮挡免费 | 东京热无码中文字 | 青青草原精品国产亚洲AV | 国产中文字幕永久在线观看 | 精品成人观看视频网站 | 亚洲色无码专区一区 | 伊人影院精品一二三 | 国产老女人精品视频网站 | 国产调教丰满欧美最近中文字幕mv高清在线 | gv在线无码男男gay | 欧美精品狠狠色丁香婷婷 | 18禁成人黄网站免费观看自慰 | 久久久久国产精品免费网站 | 精品久久香 | 91国内自产精华天堂 | 久久精品国产99久久免费 | 日韩精品人妻系列无码影院 | 欧美又粗又大又爽的A片 | 色偷偷一区二区三区视频 | 一本久久A久久精品VR综合 | 激情五月婷婷小说 | 久久久久一区二区三区四区 | 日本一级片在线观看 | 国产内久 | 精品国产综合乱码久久久久久 | 欧美日韩综合一二三区 | 91avcom| 亚洲综合久久1区2区3区 | 国产在线不卡一区二区三区 | 欧美亚洲另类国产sss在线 | 天天草天天干天天爱 | 99精品欧美一区二区三区 | 亚洲伦理在线观看 | 亚洲av无码一区二区三区天堂古代 | 日韩有码精品一区二区三区 | 亚洲色久桃花在线 | 欧美一区中文字幕 | 亚洲饱满人妻视频 | 五月丁香花 | 亚洲国产美女久久久久 | 国产日韩欧美一区二区 | 精品一区二区三区免费毛片 | 日本高清免费一本在线观看 | 国产成人午夜在线视频极速观看 | 天堂久久国产精品一区二区 | 久久精品国产福利国产秒 | 国产麻豆放荡av剧情演绎 | 2024国自产一点都不卡 | 久久精品人人做人人爽97 | 久久九九免费精品 | av毛片国产精品 | 人妻精品久久久无码专区色视 | 狠狠色丁香婷婷综合尤物 | 久久精品亚洲一区二区三区浴池 | 国产a一级毛片精品精品乱码 | 国产日韩欧美成人 | 无码中文字幕AV久久专区 | 欧美性A片人喾交 | 理论片第一页一区二区 | 欧洲日本在线观看 | 国产精品无码免费播放在线观看 | 国产3级在线 | 亚洲色偷偷综合亚洲 | 亚洲制服另类无码专区 | 麻豆国产成人免费视频 | 天天综合-永久入口7799 | 久久久久久无码国产精品中文字幕 |