Set as Homepage - Add to Favorites

精品东京热,精品动漫无码,精品动漫一区,精品动漫一区二区,精品动漫一区二区三区,精品二三四区,精品福利导航,精品福利導航。

【porno izlemek nasil kurtulur】What Are Chiplets and Why They Are So Important for the Future of Processors

While chiplets have porno izlemek nasil kurtulurbeen around for decades, their use was historically limited to specific, specialized applications. Today, however, they are at the forefront of technology, powering millions of desktop PCs, workstations, servers, gaming consoles, phones, and even wearable devices worldwide.

In a matter of a few years, most leading chipmakers have embraced chiplet technology to drive innovation. It's now clear that chiplets are poised to become the industry standard. Let's explore what makes them so significant and how they're shaping the future of technology.

TL;DR: What Are Chiplets?

Chiplets are segmented processors. Instead of consolidating every part into a single chip (known as a monolithic approach), specific sections are manufactured as separate chips. These individual chips are then mounted together into a single package using a complex connection system.

This arrangement allows the parts that can benefit from the latest fabrication methods to be shrunk in size, improving the efficiency of the process and allowing them to fit in more components.

The parts of the chip that can't be significantly reduced or don't require reduction can be produced using older and more economical methods.

While the process of manufacturing such processors is complex, the overall cost is typically lower. Furthermore, it offers processor companies a more manageable pathway to expand their product range.

Silicon Science

To fully understand why processor manufacturers have turned to chiplets, we must first delve into how these devices are made. CPUs and GPUs start their life as large discs made of ultra-pure silicon, typically a little under 12 inches (300 mm) in diameter and 0.04 inches (1 mm) thick.

This silicon wafer undergoes a sequence of intricate steps, resulting in multiple layers of different materials – insulators, dielectrics, and metals. These layers' patterns are created through a process called photolithography, where ultraviolet light is shone through an enlarged version of the pattern (a mask), and subsequently shrunk via lenses to the required size.

The pattern gets repeated, at set intervals, across the surface of the wafer and each of these will ultimately become a processor. Since chips are rectangular and wafers are circular, the patterns must overlap the disc's perimeter. These overlapping parts are ultimately discarded as they are non-functional.

Once completed, the wafer is tested using a probe applied to each chip. The electrical examination results inform engineers about the processor's quality against a long list of criteria. This initial stage, known as chip binning, helps determine the processor's "grade."

For instance, if the chip is intended to be a CPU, every part should function correctly, operating within a set range of clock speeds at a specific voltage. Each wafer section is then categorized based on these test results.

Upon completion, the wafer is cut into individual pieces, or "dies," that are viable for use. These dies are then mounted onto a substrate, akin to a specialized motherboard. The processor undergoes further packaging (for instance, with a heat spreader) before it's ready for distribution.

The entire sequence can take weeks of manufacturing and companies such as TSMC and Samsung charge high fees for each wafer, anywhere between $3,000 and $20,000 depending on the process node being used.

"Process node" is the term used to describe the entire fabrication system. Historically, they were named after the transistor's gate length. However, as manufacturing technology improved and allowed for ever-smaller components, the nomenclature no longer followed any physical aspect of the die and now it's simply a marketing tool.

Nevertheless, each new process node brings benefits over its predecessor. It might be cheaper to produce, consume less power at the same clock speed (or vice versa), or have a higher density. The latter metric measures how many components can fit within a given die area. In the graph below, you can see how this has evolved over the years for GPUs (the largest and most complex chips you'll find in a PC)...

The improvements in process nodes provide a means for engineers to increase the capabilities and performance of their products, without having to use big and costly chips. However, the above graph only tells part of the story, as not every aspect of a processor can benefit from these advancements.

Circuits inside chips can be allocated into one of the following broad categories:

  • Logic – handles data, math, and decision-making
  • Memory – usually SRAM, which stores data for the logic
  • Analog – circuits that manage signals between the chip and other devices

Unfortunately, while logic circuits continue to shrink with every major step forward in process node technology, analog circuits have barely changed and SRAM is starting to reach a limit too.

While logic still forms the largest portion of the die, the amount of SRAM in today's CPUs and GPUs has significantly grown in recent years. For example, AMD's Vega 20 chip used in its Radeon VII graphics card (2019), featured a combined total of 5 MB of L1 and L2 cache. Just two GPU generations later, the Navi 21 chip powering the Radeon RX 6000 series (2020), included over 130 MB of combined cache – a remarkable 25-fold increase.

We can expect these to continue to increase as new generations of processors are developed, but with memory not scaling down as well as the logic, it will become increasingly less cost-effective to manufacture all of the circuitry on the same process node.

In an ideal world, one would design a die where analog sections are fabricated on the largest and cheapest node, SRAM parts on a much smaller one, and logic reserved for the absolute cutting-edge technology. Unfortunately, this is not practically achievable. However, there exists an alternative approach.

Divide and Conquer

In 1995, Intel introduced the Pentium II, a successor to its original P5 processor. What set it apart from other processors at the time was the design hidden beneath its plastic shield: a circuit board housing two chips. The main chip contained all the processing logic and analog systems, while one or two separate SRAM modules served as Level 2 cache.

While Intel manufactured the primary chip, the cache was sourced from external suppliers. This approach became fairly standard for desktop PCs in the mid-to-late 1990s, until advances in semiconductor fabrication allowed logic, memory, and analog systems to be fully integrated into a single die.

While Intel continued to dabble with multiple chips in the same package, it largely stuck with the so-called monolithicapproach for processors – i.e., one chip for everything. For most processors, there was no need for more than one die, as manufacturing techniques were proficient (and affordable) enough to keep it straightforward.

However, other companies were more interested in following a multi-chip approach, most notably IBM. In 2004, it was possible to purchase an 8-chip version of the POWER4 server CPU that comprised four processors and four cache modules, all mounted within the same body (known as a multi-chip moduleor MCM approach).

Around this time, the term "heterogeneous integration"started to appear, partially due to research work done by DARPA. Heterogeneous integration aims to separate the various sections of a processing system, fabricate them individually on nodes best suited for each, and then combine them into the same package.

Today, this is better known as system-in-package(SiP) and has been the standard method for equipping smartwatches with chips from their inception. For example, the Series 1 Apple Watch houses a CPU, some DRAM and NAND Flash, multiple controllers, and other components within a single structure.

A similar setup can be achieved by having different systems all on a single die (known as an SoC or system-on-a-chip). However, this approach doesn't allow for taking advantage of different node prices, nor can every component be manufactured this way.

For a technology vendor, using heterogeneous integration for a niche product is one thing, but employing it for the majority of their portfolio is another. This is exactly what AMD did with its range of processors. In 2017, the semiconductor giant introduced its Zen architecture with the launch of the single-die Ryzen desktop CPU. Just a few months later, AMD debuted two multi-chip product lines: Threadripper and EPYC, with the latter featuring configurations of up to four dies.

With the launch of Zen 2 two years later, AMD fully embraced HI, MCM, SiP – call it what you will. They shifted the majority of the analog systems out of the processor and placed them into a separate die. These were manufactured on a simpler, cheaper process node, while a more advanced one was used for the remaining logic and cache.

And so, chiplets became the buzzword of choice.

Smaller is Better

To understand exactly why AMD chose this direction, let's examine the image below. It showcases two older CPUs from the Ryzen 5 series – the 2600 on the left, employing the so-called Zen+ architecture, and the Zen 2-powered 3600 on the right.

The heat spreaders on both models have been removed, and the photographs were taken using an infrared camera. The 2600's single die houses eight cores, though two of them are disabled for this particular model.

This is also the case for the 3600, but here we can see that there are two dies in the package – the Core Complex Die (CCD) at the top, housing the cores and cache, and the Input/Output Die (IOD) at the bottom containing all the controllers (for memory, PCI Express, USB, etc.) and physical interfaces.

Since both Ryzen CPUs fit into the same motherboard socket, the two images are essentially to scale. On the surface, it might seem that the two dies in the 3600 have a larger combined area than the single chip in the 2600, but appearances can be deceiving.

If we directly compare the chips containing the cores, it's clear how much space in the older model is taken up by analog circuitry – it's all the blue-green colors surrounding the gold-colored cores and cache. However, in the Zen 2 CCD, very little die area is dedicated to analog systems; it's almost entirely composed of logic and SRAM.

The Zen+ chip has an area of 213 mm2 and was manufactured by GlobalFoundries using its 12nm process node. For Zen 2, AMD retained GlobalFoundries' services for the 125 mm2 IOD but utilized TSMC's superior N7 node for the 73 mm2 CCD.

The combined area of the chips in the newer model is smaller, and it also boasts twice as much L3 cache, supporting faster memory and PCI Express. The best part of the chiplet approach, however, was that the compact size of the CCD made it possible for AMD to fit another one into the package. This development gave birth to the Ryzen 9 series, offering 12 and 16-core models for desktop PCs.

Even better, by using two smaller chips instead of one large one, each wafer can potentially yield more dies. In the case of the Zen 2 CCD, a single 12-inch (300 mm) wafer can produce up to 85% more dies than for the Zen+ model.

The smaller the slice one takes out of a wafer, the less likely one is going to find manufacturing defects (as they tend to be randomly distributed across the disc), so taking all of this into account, the chiplet approach not only gave AMD the ability to expand its portfolio, it did so far more cost-effectively – the same CCDs can be used in multiple models and each wafer produces hundreds of them!

But if this design choice is so advantageous, why isn't Intel doing it? Why aren't we seeing it being used in other processors, like GPUs?

Following the Lead

To address the first question, Intel has been progressively adopting chiplet technology as well. The first consumer CPU architecture they shipped using chiplets is called Meteor Lake. Intel's approach is somewhat unique though, so let's explore how it differs from AMD's approach.

Using the term tilesinstead of chiplets, this generation of processors split the previously monolithic design into four separate chips:

  • Compute tile: Contains all of the cores and L2 cache
  • GFX tile: Houses the integrated GPU
  • SoC tile: Incorporates L3 cache, PCI Express, and other controllers
  • IO tile: Accommodates the physical interfaces for memory and other devices

High-speed, low-latency connections are present between the SoC and the other three tiles, and all of them are connected to another die, known as an interposer. This interposer delivers power to each chip and contains the traces between them. The interposer and four tiles are then mounted onto an additional board to allow the whole assembly to be packaged.

Unlike Intel, AMD does not use any special mounting die but has its own unique connection system, known as Infinity Fabric, to handle chiplet data transactions. Power delivery runs through a fairly standard package, and AMD also uses fewer chiplets. So why is Intel's design as such?

One challenge with AMD's approach is that it's not very suitable for the ultra-mobile, low-power sector. This is why AMD still uses monolithic CPUs for that segment. Intel's design allows them to mix and match different tiles to fit a specific need. For example, budget models for affordable laptops can use much smaller tiles everywhere, while AMD only has one size chiplet for each purpose.

The downside to Intel's system is that it's complex and expensive to produce (which has lead to different kind of issues). Both CPU firms, however, are fully committed to the chiplet concept. Once every part of the manufacturing chain is engineered around it, costs should decrease.

When it comes to GPUs, they contain relatively little analog circuitry compared to the rest of the die. However, the amount of SRAM inside has been steadily increasing. This trend prompted AMD to leverage its chiplet expertise in the Radeon 7000 series, with the Radeon RX 7900 GPUs featuring a multi-die design. These GPUs include a single large die for the cores and L2 cache, along with five or six smaller dies, each containing a slice of L3 cache and a memory controller.

By moving these components out of the main die, engineers were able to significantly increase the amount of logic without relying on the latest, most expensive process nodes to keep chip sizes manageable. While this innovation likely helped reduce overall costs, it did not significantly expand the breadth of AMD's graphics portfolio.

Currently, Nvidia and Intel consumer GPUs are showing no signs of adopting AMD's chiplet approach. Both companies rely on TSMC for all manufacturing duties and seem content to produce extremely large chips, passing the cost onto consumers.

That said, it is known that both are actively exploring and implementing chiplet-based architectures in some of their GPU designs. For example, Nvidia's Blackwell data center GPUs utilize a chiplet design featuring two large dies connected via a high-speed interlink capable of 10 terabytes per second, effectively functioning as a single GPU.

Getting 'Moore' with Chiplets

No matter whenthese changes occur, the fundamental truth is that they musthappen. Despite the tremendous technological advances in semiconductor manufacturing, there is a definite limit to how much each component can be shrunk.

To continue enhancing chip performance, engineers essentially have two avenues – add more logic, with the necessary memory to support it, and increase internal clock speeds. Regarding the latter, the average CPU hasn't significantly altered in this aspect for years. AMD's FX-9590 processor, from 2013, could reach 5 GHz in certain workloads, while the highest clock speed in its current models is 5.7 GHz (with the Ryzen 9 9950X).

Intel's highest-clocked consumer CPU is the Core i9-14900KS, featuring a maximum turbo frequency of 6.2 GHz on two cores. This "special edition" processor holds the record for the fastest out-of-the-box clock speed among desktop CPUs.

However, what haschanged is the amount of circuitry and SRAM. The aforementioned AMD FX-9590 had 8 cores (and 8 threads) and 8 MB of L3 cache, whereas the 9950X boasts 16 cores, 32 threads, and 64 MB of L3 cache. Intel's CPUs have similarly expanded in terms of cores and SRAM.

Nvidia's first unified shader GPU, the G80 from 2006, consisted of 681 million transistors, 128 cores, and 96 kB of L2 cache in a chip measuring 484 mm2 in area. Fast forward to 2022, when the AD102 was launched, and it now comprises 76.3 billion transistors, 18,432 cores, and 98,304 kB of L2 cache within 608 mm2 of die area.

In 1965, Fairchild Semiconductor co-founder Gordon Moore observed that in the early years of chip manufacturing, the density of components inside a die was doubling each year for a fixed minimum production cost. This observation became known as Moore's Law and was later interpreted to mean "the number of transistors in a chip doubles every two years", based on manufacturing trends.

Moore's Law has served as a reasonably accurate representation of the semiconductor industry's progress for nearly six decades. The tremendous gains in logic and memory in both CPUs and GPUs have largely been driven by continuous improvements in process nodes, with components becoming progressively smaller over time. However, this trend cannot can't continue forever, regardless of what new technology comes about.

Rather than waiting for these physical limits to be reached, companies like AMD and Intel have embraced chiplet technology, exploring innovative ways to combine these modular components to sustain the creation of increasingly powerful processors.

Decades in the future, the average PC might be home to CPUs and GPUs the size of your hand. But, peel off the heat spreader and you'll find a host of tiny chips – not three or four, but dozens of them, all ingeniously tiled and stacked together. The dominance of the chiplet has only just begun.

Keep Reading. Explainers at TechSpot

  • Meet Transformers: The Google Breakthrough that Rewrote AI's Roadmap
  • Why Are Modern PC Games Using So Much VRAM?
  • Is the Ryzen 9800X3D Truly Faster for Real-World 4K Gaming?
  • Number Representations in Computer Hardware, Explained

0.1392s , 10120.8984375 kb

Copyright © 2025 Powered by 【porno izlemek nasil kurtulur】What Are Chiplets and Why They Are So Important for the Future of Processors,Info Circulation  

Sitemap

Top 国产精品久久久久久久久99热 | 波多野结衣与老人系列 | 久久久久无码精品国产av网站 | 国产av无码一区二区三区最新 | 欧洲精品在线永久视频隐藏入口 | 色天天综合久久久久综合片 | 日日爱导航| 日本黄色片一级 | 一本道高清无码在线观看黄色工 | 91在线精品亚洲一区 | 国产精品自拍亚洲 | 精品久久久中 | 亚洲处破女aⅴ | 狠色鲁很很鲁在线视频 | 亚洲国产精品一区最新久久 | 国产tv在| 波多野结衣在线视频播放一区二区 | 精品人妻系列无码专区 | 午夜国产理论 | 成人乱码一区二区三区A片 成人乱码一区二区三区四区 | 免费看欧美换爱交换乱理伦片 | 国产白白视频在线观看2 | 欧美午夜精品久久久 | 天堂国产 | 亚洲欧美自拍另类图片色 | 激情欧美日韩一区二区亚洲乱码国产乱码精品精大量国产综合 | 国产啪亚洲欧美精品无码 | 国产99久久精品区一区二 | 97人妻在线免费观看 | japanese厨房乱tub偷 | 亚洲国产91在线 | 人妻少妇av中文字幕乱码 | 成人一区二区三区在线观看 | 国产白浆二区二区精品视频 | 久久久精品国产亚洲成人满18免费网站 | 99久久国产综合色婷婷 | 国产福利午夜波多野结衣 | 精品国产粉嫩内射白浆内射双马尾 | 国产成人免费高潮激情视频 | 欧美大片精品免费永久看nba | 国产午夜精品一区二区三区小说 | 四虎精品国产永久在线观看 | 东京热高清中文字幕 | 亚洲国产网站 | 国产精品一二三入口播放 | 国产精品内射婷婷一级二 | 亚洲制服丝袜一区二区三区 | 亚洲一区二区三区四区五区六区 | 久久久无码中文字幕久 | 2024四虎永久在线观看 | 久久久久久午夜成人影院 | 亚洲国产成人精品无码区在线观 | 青青青青久久伊人国产 | 国产精品免费视频一区二区 | 无码人妻精品一区二区抖音 | 97人视频国产在线观看 | 玖玖精品视频 | 四库影院永久国产精品地址 | 日韩最新视频一区二区三 | 日韩一级精品视频在线观看 | 国产99最新在线 | 久久久久久国产精品视频 | 东京热加勒比无码精品91热 | 69无人区码一码二码三码区别 | 一区二区韩国福利网站 | chinese熟女老女人hd | 欧美 国产 日韩 另类 视频区 | 成人在线偷拍自拍视频 | 2024自拍偷在线精品自拍偷 | 国产精品无码av天天爽播放器 | 久久国产热这里只有精品 | 青青青国产免费手机频在线观看 | 成年无码av动漫全部免费 | 国产真实野战在线视频 | 高清欧美一区二区三区 | 91久久久精品无码一区一一区 | 91人妻无码一区二区精品免费 | 高清欧美不卡一区二区三区 | 欧美精品国产第一区二区 | 日韩久久精品麻豆出品 | 国产熟女一区二区三区四区五区 | 欧美日韩国产有码在线观看 | 欧美又大又粗又湿A片 | 久久久久久精品中文无码 | 亚洲激情一区 | 日日鲁鲁鲁夜夜爽爽狠狠视频97 | 伊人无码精品久久一区二区 | 18成禁人视频打屁股免费网站 | 亚洲国产第一区 | 色偷偷男人的天堂a v | 麻豆app2.24.15.15安卓版下载 | 97热在线| 亚洲国产va乱码毛片一级高清三 | 亚洲欧美综合日韩字幕v在线 | 日韩亚洲AV无码波多野结衣 | 2024国产精品一区二区在线 | 亚洲欧美v国产一区二区三区 | 国产亚洲欧美日韩在线看片 | 99精品国产高清一区二区 | 免费观看碰碰碰视频在线观看 | 无码精品人妻一区二区三A片 | 久久99国产日韩精品久久 | 丁香五月婷婷基地激情 | 老司机福利在线免费观看 | 国产黄网站 | 日本精品高清一区二区不卡 | 国产一区二区精品高清在线观看 | 美日韩毛片 | 丁香社区五月开心激情婷婷 | 欧美三级片中文字幕 | 无套内谢少妇毛片免费看 | 无码国产精品一区二区v精东影视v | 亚洲国产精品一区二区三区 | 久久免费看少妇高潮A片小说 | 久久综合丁香 | 日本三级免费电影一区二区三区 | 欧美日韩国产精品va | 久久久久99精品成人片直播 | 无码精品国产一区二区三区免费 | 国产精品高潮 | 色天使论坛邀请码 | 成人国产在线视频 | 潮喷在线播放视频 | 成人无码一区二区三区网站 | 成人免费又大又爽A片视频 成人免费在线观看视频 | 久久精品综合国产一区二区 | 久久精品一区二区三区毛片网站大全 | 美女扒开下面让男生桶白浆 | 制服丝袜一区二区 | 亚洲精品久久无码AV片麻豆 | 精品无码国产污污污免费网站 | 国产91足控脚交在线观看 | 无码免费久久国产 | 1区1区3区4区产品乱码芒果 | 国产精品无码一区二区aⅴ污美国 | 四虎影视永久无码精品 | 久久久男人的天堂 | 日韩高清在线观看永久 | 草色噜噜噜AV在线观看香蕉 | 亚洲午夜无码毛片AV久久久久久 | 国产在线成人一区二区三区 | 国偷自产一区二视频观看 | 狠狠的撸2016最新版 | 精品无码国产在线一区二区 | 人妻无码一区二区三区欧美熟妇 | 无码中文字幕亚洲一区二区三区 | 日本免费一区二区三区a区 日本免费一区二区三区四区五六区 | 久久精品资源站 | 国语熟妇乱人伦A片久久 | 国产欧美日韩综合精品一区二区三区 | 激情爆乳一区二区三区 | 丝瓜污视频 | 欧美午夜免费大片 | 欧美日韩免费不卡 | 国产女人裸体在线视频 | 亚洲欧美中文字幕 | 国产精品亚洲欧美大片在线看 | 在线播放免费人成毛片软件 | 亚洲欧美在线亚洲 | 99国产精品白浆免费观看 | 久久国产精品日本韩国 | 东京热天码av一区 | 日韩做A爰片久久毛片A片 | 亚洲国产精品99久久久久久 | 91制片厂果冻传媒公司苏语棠 | 精品亚洲a∨无码一区二区三区 | 日韩欧美国产高清在线三区 | 精品无码一区二区三区蜜桃 | 91在线人妻| 亚洲欧美精品久久 | 91精品无人区麻豆 | 97一期涩涩97片久久久久久久 | 国产三级视频在线播放 | 国产avxxxx无套内射 | 久久精品久久精品国产大片 | 激情综合丁香婷婷色五月 | 国产免费的又黄又爽又色 | 国产成人a人亚洲精品无码 国产成人a视频高清 | 国产欧美自拍偷怕日韩亚洲 | 日韩人妻高清精品专区 | 国产伦精品一区二区三区不卡 | 97无码人妻一区二区三区蜜桃 | 久久精品国产亚洲妲己影院 | 国产乱子伦视频大全亚洲欧美 | 女人18毛片水真多免费播放 | 日本一区二区三区成人片 | 亚洲精品高清国产麻豆专区 | 久久国产亚洲精品美女久久久久 | 综合久久久久综合体桃花网 | 人妻无码精品久久亚瑟影视 | 成人免费又大又爽A片视频 成人免费在线观看视频 | 国产一级一片免费播放 | 国内久久精品 | 成人无码精品一区二区三区亚洲区 | 东北寡妇特级毛片免费 | 91在线看视频| 日韩在线免费观看av网站 | 精品国产一级二级码 | 亚洲一线产区和二线产区的区别广告 | 国产一区二区精品尤物 | 国产精品无码麻豆一区 | 久久久久久一级毛片免费无遮 | 人妻无码久久综合东京热 | 成人午夜无码影院视频在线观看 | 亚洲AV片在线观看 | a级黑人大硬长爽猛出猛进 a级黄韩国电影免费久久久 | 韩日美无码精品无码 | 香港aa三级久久三级 | 久久婷婷五月综合色丁香 | 亚洲秘无码一区二区 | 浪荡女天天不停挨cao日常视频 | 2024久热爱精品 | 级毛片久久久毛片精品毛片 | 亚洲欧美日韩国产综合第一产区 | 国产成人毛片在线视频 | 亚洲综合色无码 | 国产99久久一区二区三区 | 在线观看高清黄网站免费 | 91精品啪在线观看国产91九色 | 国产AV一区二区三区人妻 | 亚洲第一成年免费网站 | 91精品国产成人网在线观看 | 丁香五月综合缴情月 | 欧美日韩精品一区二区在线观看 | 国产91精彩在线观看 | 国产精品人妻一区二区三区无码 | 久久久久久久久精品 | 在线观看国产一区二区三区 | 国产精品卡一卡2卡三卡网站 | 久久久久伊人 | 亚洲成a人片www | 国产日韩免费av片 | 人妖ts在线 | 国产精品亚洲欧美大片在线 | 午夜国产视频 | 青草视频网址 | 国产99久久精品69天堂 | 天天干天天插天天射 | 国产精品成人免费福利 | 亚洲国内自拍欧美一区二区三区 | 久久久无码精品午 | 国产亚洲漂亮白嫩美女在线 | 亚洲欧美日韩中文无线码 | 国产91精品一区二区三区四区高清在线观看 | 狠狠肏天天插日日干 | 久久99国产综合精品 | 中文字幕日韩丝袜一区 | 国产精品久久欧美一区 | 精东黄色软件 | 国产重口一区二区三区 | 国产精品原创视频一区二区 | 免费在线观看的av网站 | 奇米精品一区二区三区 | 99久久精品国产一区二区麻豆 | 99玖玖精品视频在 | 性感美女视频在线观看一区二区 | 成年免费大片黄在线观看岛国 | 91网站在线免费观看 | 日韩一区二区三区视频 | 放荡少妇苍井空张开双腿 | 美女视频一区二区三区在线 | 天堂精品视频一区二区在线观看 | 久久99国产精品亚洲 | 欧美精品乱码视频一二专区 | 成人午夜天 | 天天视频入口一区二区 | 在线亚洲AV成人无码一区小说 | 成人做色视频在 | 日日摸天天添天天添无码蜜臀 | 国产精品国产三级国av在线观看 | 91麻豆国产极品 | 91亚洲国产成人 | 少妇被又大又粗又爽毛片久久黑人 | 朝桐光亚洲专区在线中文字幕 | 天天综合精品视频香蕉 | 人妻一区二区三区四 | 日韩伦理在线 | 99热精品一区 | 国产精品白拍三级 | 久久精品国产99久久丝袜蜜桃 | 亚洲无线一线二线三线区别 | 人妻丰满熟妇aⅴ无码无码区免 | 欧美日韩精品一区二区另类 | 天噜啦精品免费视频日本免费视频 | 无套内谢孕妇毛片免费看 | 激情综合在线观看 | 中文乱码字慕人妻熟女人妻 | 精品久久久一二三区 | YY视频大片免费看网站 | 无码少妇一区二区三区芒果 | 久久五月天综合 | 国产99在线亚洲 | 精品久久久久久亚洲女厕 | 亚洲另类无码一区二区三区 | aⅴ中文字幕| 波多野结衣av东京热无码专区 | AV午夜午夜快憣免费观看 | 国产av无码熟妇 | 日韩成人黄页网免费大全视频 | av二区av三区 | 在线欧美精品一 | 99久热国产精品视频尤物 | 国产a级综合区毛片久久久 国产a级作爱片免费看 | 亚洲欧美另类日本人人澡 | 国产人妻人伦精品59HHH | 日韩高清大片永久免费入口 | 精品久久人人爽人人玩人人妻 | 国产99精品视频一区二区三区 | 男女又黄又刺激B片免费网站 | 国产三级电影在线观看一区二区三区 | 国产日产欧产精品精品 | 日韩中文字幕 | 成人国产精品一区二区网站 | a级毛片在线高清观看 | 亚洲AⅤ鲁丝一区二区三区 亚洲aⅴ秘区二区三区4 | 久久久久久亚洲精品中文字幕 | 日日摸夜夜添夜夜添A片图片 | 中文字幕视频精品一区二区三区 | 粗大黑人巨精大战欧美成人 | 成人区精品一区二区不卡av免费 | 色婷婷综合中文久久一本 | 国产颜射手机在线播放 | 蜜臀av人妻久久无码精品麻豆 | 老司机午夜影院 | 国产成人无码区免费网站 | 国产又色又爽又黄的A片 | 婷婷夜夜躁天天躁人人躁 | 91制片厂果冻传媒天美 | 欧美日韩国产高清在线一 | 亚洲精品久久久久久动漫 | 天天干很很干人人干 | 国产亚洲欧美一区二区 | 美女天天操 | av网站的免费观看 | 国产v片在线播放免费无遮挡 | 国产无码高潮在线 | 国产三级韩国三级日产三级 | 在线观看无码精品动漫 | 国产精品日韩无码一区二区 | 欧美日韩精品一区二区在线播放蜜臀 | 99久久精品国产精油按摩店 | 国产a级一级久久毛片 | 国产亚洲人成在线播放 | 国产精品久久欧美久久一区 | 天天做爽网站 | 国产91无毒不卡在线观看 | 久久免费看少妇高潮A片特爽 | 中文字幕国产在线 | 99久久久国产精品性 | 久久99精品视免费看 | 国产av无码专区亚洲aⅴ蜜芽 | 国产色噜噜日韩精品欧美好吊视频一区二区 | 国产精品毛片v一区二区三区 | 国产午夜小视频 | 77777亚洲午夜久久多人同性 | 日韩精品免费一区二区 | 人妻少妇精品无码专区视频 | 成人无码不卡 | 97精品国产91久久久久 | 免费观看中文字幕午夜理论 | 欧美一级特黄刺激爽大片 | 极品av在线播放 | 漂亮人妻洗澡被强BD中文 | 精品一卡2卡三卡4卡 | 日韩欧美一区二区中文字幕 | a级毛片免费观看完整 | 亚洲a∨无码成人精品区在线观看 | 麻豆果冻传媒新剧国产杜鹃 | 人妻无码中文字幕永久在线 | 成人AV久久一区二区三区 | 狠狠综合久久久久综合 | 日韩va无码中文字幕 | 国产亚洲精品久久久性色情软件 | 无码av免费网站 | 日韩欧美一区视频在线观看 | 日韩欧美人妻视频 | 国产三级精品三级在线观 | 91破处视频 | 毛色毛片免费观看 | 亚洲精品成人专区在线观看 | 国产av级不卡毛片在线观看 | 日韩欧美一区二区三区免费观看 | 久久久国产精品成人片 | 成人av免费视频在线观看 | 狠狠鲁的网站 | 久久精品国产99久久丝袜蜜 | 国产精品亚洲综合一区在线观 | 成人av在线一区二区三区 | 成人国产亚洲日韩欧美亚州 | 在线观看无码国产精品午夜无码 | 交换娇妻呻吟声不 | 色悠悠网站 | 国产又色又爽又黄又免费的小说 | 成人动漫久久 | 日本一区色情无码视频在线观看 | 法国主播美女 | 成人精品一区二区三区不卡免费看 | 国产欧美一区二区三区视频 | 日韩一级一欧美一级国产 | 狠狠色丁香婷婷久久综合 | 欧洲亚洲精品A片久久果冻 欧洲亚洲永久入口免费 | 中文字幕日韩精品第一页 | 成人免费看WWW网址入口 | 一区二区三区国产好的精 | 国产精品无码久久久久久久久久 | 国产精品久久欧美一区 | 久久热这里只有精品7 | 伦理电影中文字幕韩国在线观 | 久久视频这里只精品18 | 国产suv精品一区二区四 | 国产一区在线观看免费 | 人妻丰满熟妇av无码片 | 国产精品三级1区2区3区 | 91无码精品一区 | 国产精品99AV在线观看 | 国产日韩另类视频一区 | 特级免费毛片 | 人人牛牛| 99热动漫这里只有精品无卡顿 | 日日夜夜天天人人干干巴巴 | 国产电影一区二区三区:多元视角下的崛起与挑战 | 麻豆最新国产剧情AV原创免费 | 国产精品又黄又爽无遮挡嘿嘿国产在线麻豆波多野结衣 | 无码人妻aⅴ一区二区三区日本 | 国产99久久亚洲综合精品西 | 久久精品久久精品久久精品 | 国产免费一级精品视频 | 日本精品一区二区三区高清 | 四虎影视最新的2024网址 | 国产激情视频在线观看 | 国产a久久精品一区 | 国产91精品秘入口蝌蚪 | 亚洲国产剧情中文视频在线 | 波多野结衣加勒比 | 精品久久久久久无码中文字幕版 | 女同另类啪 | 国产真实老熟女无套内射 | 麻豆精产三产最简单处理方法 | 日本少妇浓毛BBWBBWBBW | 国产成人精品日本亚洲专区6 | 久久精品夜夜春 | 一卡久久4卡5卡6卡7卡 | 久久国产精品亚洲综合 | av二区av三区 | 久久久影院亚洲精品 | 亚洲国产欧美国产第一区二 | 成人a级毛片免费播放 | 99久久精品久久亚洲精品 | 天天干天天干天天 | 久草在线视频免费老司机 | 毛片女人18片毛片免费二区 | 色老头成人免费综合视频 | 人人舔人人爱 | 欧美精品一国产成人综合久久 | 日韩精品无码一二区 | 久久国产精品久久软件 | av毛片高清在线观看 | 成人精品三级网站 | 久久这里只有精品久久 | 久久久无码精品国产一区 | 精品国产涩涩污免费网站 | 日韩美女自卫慰黄网站 | 欧美日韩国产综合草草蜜臀 | 毛片网站免费 | 无码av中文字幕久久专区 | 欧美猛交XXX无码黑寡妇 | a级毛片成人网站免费看 | 一本色道久久综合国产 | 欧美午夜乱理片无码视频 | 麻豆成人91久久精品二区三区 | 青青草国产成人久久91网 | 国产日韩中文字幕 | 狠狠色婷婷狠狠狠亚洲综合 | 少妇人妻一区二区三区 | 国产亚洲综合欧美视频天 | 国产成人精品一区二三区在线 | 成人亚洲中文字幕无线乱码 | 黑人大黑机巴做爰 | 爱豆直击国产精品原创av片国产 | 欧美成人精品第一区 | 久久国产精品亚洲va麻豆 | 欧美综合区自拍亚洲综合图 | 激情文学另类小说亚洲图片 | 国产专区日韩精品欧美色 | 国产成人久久精品一区二区 | 国产精品白浆一区二小说 | 三级黃色男人的天堂 | 欧美内射AAAAAAXXXXX | 精品日韩国产无码一区二区 | 2024国产麻豆剧传媒最 | 东京av在线无码 | 97国内免费久久久久久久久久 | 凹凸在线无码免费视频 | 欧美精品做人一级爱免费 | av国内精品久 | 午夜精品一区二区三区免费视频 | 99这里视频只精品2024 | 亚洲中文色欧另类欧美动图 | 日韩激情无码乱码 | 国产成人无码免费看视频软件 | 亚洲区码一码二码高高 | 日韩在线一区国产国 | 国产精品无码专区第1页 | 少妇无码一区二区三区av | 国产成人精品成熟一区 | 久久99精品视频 | 欧美丝袜秘书在线一区 | 日本黄色三级网站 | 国产精品码一区二区蜜桃 | 亚洲日本精品国产第一区二区 | 色综合久久精品亚洲国产消防 | 亚洲亚洲人成网站在线观看 | 成人毛片无码一区二区三区 | 日韩国产一区二区三区四区五区 | 精品国产一级毛片国语版 | 欧美自拍偷拍一区二区 | 激情综合色 | 久久精品一本到东京热 | 国产人妻精品午夜福利免费不卡 | 欧美美女一区 | 国产一级a毛一级a看免费视频 | 久久国产精品99精国产 | 伊人久久大香线蕉影院 | 波多野结衣日韩中文字幕 | 国产浓毛大泬熟妇视频 | 超级香蕉97视频在线观看一区 | 天天操天天天 偷怕自怕影院 | 成人片黄网站a毛片免费观看 | 精品AV一区二区三区久久 | 国产亚洲另类综合在线 | 久久久这里只有精品免费 | 久久久无码一区精品 | 国产三级一区二区在线播放 | 国产综合一区二区在线观看 | 无人区在线完整免费版高清 | 国产精品爆乳尤物99精品 | 国产三级电影在线观看一区二区三区 | 日本高清视频免费在线观看 | a级片小草好吊人妻精美视频网站 | 国产aaa一区二区三区 | 亚洲国内自拍欧美一区二区三区 | 成人免费高清视频一区二区 | 亚洲国产无线乱码在线观看 | 性色香蕉AV久久久天天网 | 国产成人无码av高清在线 | 人妻小说欧美中文字幕亚洲乱码熟女 | 欧洲每年百万吨电子垃圾流向亚非 | 久久精品AV一区二区三 | 久久国产精品免费一区二区三区睡前观看 | 国产一区二区三区免费大片天美 | 女同久久精品 | 日本一道高清 | 国产一性一交一伦一A片视频 | 国产精品天干天干在线综合 | 久久国产自偷自偷免费一区调 | 国产成人精品日本无码动漫 | 国产成人91亚洲精品无码观看 | 国产福利在 线观看视频 | 波多野成人无码精品电影 | 中文字幕日韩精品欧美一区 | 欧美日产国产精选 | 美女内射毛片在线看免费人动物 | 日韩精品免费一区二区三区 | 亚洲国产成人久久一区二区三区 | 国产欧美日韩一区二区加勒 | 大香网伊人久久综合网2024 | 国产高潮流白浆喷水免费网站 | 91在线蜜桃臀 | 亚洲欧美另类天天更新影院 | 无码中文字幕久久久一区二区 | 国内精品久久毛片一区二区 | a级国产乱理伦片在线观看 a级国产乱理论片在 | 精品日韩欧美 | 金瓶梅电影在线 | 天天在线高清黄页 | 一本道本月无码 | 国产一区二区精品在线观看 | 9191精品国产免费 | 丰满人妻熟妇乱又仑精品 | 在线播放最好看的国语电视剧在 | 九九热精品免费观看 | 免费国产99久久久香蕉 | 日韩在线成年视频人网站观看 | 国产精品成久久久久三级四虎 | 精品一区中文字幕乱码 | 国产成人无码手机在线 | 成年女人喷潮毛片免费播放 | 好爽快点我受不了了国产 | 成人一区二区三区在线观看 | 精品无码国产自产拍在线观看 | 国产精品香蕉视频在线 | 国产亚洲日韩欧美一区二区三区 | 久热精品视频在线观看 | 欧美日韩一区精品视频一区二区 | 二区不卡无毒影院 | 91精品国久久久久久无码 | 黑人射精无码啪啪区 | 日本三级韩国三级香港三级写真集 | av无码十八禁网站观看 | 2024国产麻豆剧传媒精品网站免费在线观看高清完整版 | 久久神马影院 | 亚洲地址一地址二地址三 | 久久久久久无码午夜精品 | 国产欧美日韩精品二区 | 91久久精一区二区 | 麻豆国产亚洲视频在线 | 国产日韩精品中文字无码国产精品 | 久久久久久久精品女人毛片 | 成人无码WWW在线看免费 | 99日日夜夜免费精品 | 91久久久久无码va成人国 | 无码又爽又刺激视频A片涩涩 | 男女又黄又刺激B片免费网站 | 日本一本二本三本区在线观看完整版 | 国产成人精品综合久久久久性色 | 精品国产福利片在线观看 | 国产精品18久久久久久欧美网址 | 国产精品亚洲综合久久系列 | 亚洲精品久久无码一区二 | a级视频免费在 | 久久久久成人亚洲精品 | 国产精品99久久免费观看 | 国产在线激情视频 | 国产欧美另类久久精品蜜芽 | 国产高清视频一区二区在线观看 | 人妻精品一区二区三区99仓本 | av无码国产综合专区 | 国产亚洲人成网站在线观看 | 一区二区日本视频 | 久久不卡日韩美女 | 亚洲日本精品va中文字幕 | 国产私拍精品福利 | 国产91精品一区二区果冻传媒 | 国产成人精品久久久久久久 | 国产亚洲人成无码 | 美女视频大全视频a免费九 美女视频黄a视频全免费网站色窝 | 午夜DJ国产精华日本无码 | 变态另类欧美大码日韩 | 国产精品呻吟一区二区三区 | 人妻中出无码中字在线 | 麻豆av出品在线观看 | 欧美日韩免费高清视频一区二区 | 国产精品成人小电影在线观 | 中文字幕国产视频欧美精品 | 久久久久亚洲视频 | 麻豆一区二区中文字幕 | 欧美日韩国产综合 | 91精品最新国内在线播放 | 国产精品自在线拍国产电影 | 中文字幕字幕无码乱码在线 | 国精产品一区二区三区有限 | 亚洲综合网国产精品一区 | 国产成人aⅴ在线免播 | 欧美三级中文字幕国产 | 成人午夜性a级毛片免费 | 久久综合久久美利坚合众国 | 国产精品人妻一码二码 | 欧美日韩人妻精品一区二区三 | 精品日韩国产欧美在线观看 | 波多野结衣家庭教师久草 | 亚洲国产成人精品无码区密臀Av | 国产乱子伦农村叉叉叉 | 无码成人一区二区 | 波多野结衣侵犯蓝光 | 无码av在线播放专区 | 亚洲人妻少妇av资源网站 | 高清日韩欧美另类 | 国产麻豆综合视频在线观看 | 亚洲综合久久久久久久久久网 | 日本-区一区二区三区A片 | 麻豆果冻传媒新剧国产杜鹃 | 无码激情全黄做爰片 | 成人精品免费播放 | 夫妇野外交换hd中文 | 日本东京热久久综合一区二区三区 | 精品国产乱码久久久久软件 | 日韩精品无码免费网站 | 亚洲av综合av一区二区三区 | av无码免费一区二区三区 | 性色AV性色生活片 | 99久无码中文字幕一本久道 | 国产亚洲精品久久久久久入口 | 蜜桃久久久久久久久久久 | 日日摸夜夜添夜夜无码区 | 国产做A爱片久久毛片A片秋霞 | 天堂国品一二三产品区别大吗 | 午夜西瓜视频在线观看 | 少妇人妻系列无码专区视频 | 成人性欧美丨区二区三区 | 9191精品国产免费 | 日韩小视频在线播放 | 欧美日韩亚洲中文字幕一区二区三区 | 18禁免费无码无遮挡不卡网站 | 国产野模私拍视频一区二区 | 欧美精品中文字幕亚洲专区 | 亚洲成人日韩综合 | 亚洲在线2018最新无码 | av无码国产片在线播放波多 | 丁香婷婷久久大综合 | 激情六月丁香婷婷 | 中文字幕欧美一区 | 欧美日韩一区二区三区在线视频 | 一本久道久综合久久鬼色 | 高清不卡日本v二区在线 | 国产精品中文字幕亚洲欧美 | 欧美精品九九99久久在观看 | 精品国产国产综合精品 | 免费无遮挡无码永久在线观看视频 | 超碰97人人射妻涵盖人人碰在线视频久久跪求我少妇18渠道 | 久久精品99 | 91亚洲国产成人 | 久久久久久精品免费无码网 | 亚洲最大的福利网站在线观看 | 亚洲欧美日韩国产精品一区二区 | 亚洲色欲色欲www在线观看 | 国产av毛片久 | 无码av人妻精品一区二区三区抖音 | av天堂无码资源网 | 国产欧美自拍视频在线一区 | 久久国产精品免费A片蜜芽 久久国产精品免费久久 | 91免费网址 | 18禁美女裸身无遮挡免费网站 | japanese日本熟妇多毛 | 91热成人精品国产免费 | 成人无码h动漫网站免费视频 | 国产欧美一区视频在线观看 | 成年女人色直播免 | 国产午夜精品视频 | 九一制片厂果冻传媒麻豆电影在线观看 | 国产av国片精品一区二区 | 国产精品高清一区二区三区不卡 | aaaa亚洲成色精品一二二区 | 国产日韩传媒一区二区三区四区 | 国产999热这里只有国产中文精品 | 久久精品国产自在一线 | 五月丁香婷婷六月综合 | 久久国产亚洲日韩一本 | 成人免费一级毛片生活片 | 在线观看无码国产精品午夜无码 | 久久久久久精品天堂无码中文字幕 | 日韩欧美中文字幕公布 | 国产成人av国语在线观看 | 国产欧美一区二区三区涩涩 | 特级太黄A片免费播放成人片视频 | 又湿又紧又爽视频免费软件 | 成人a片ⅴ一区二区三区动漫 | 久久综合亚洲色一区二区三区精品丝袜 | 日韩黄色小说 | 强行扒开双腿尽情玩弄视频 | 亚洲国产午夜精华无码福利 | 中文字幕卡二和卡三的视频 | 久久久99精品成人片中文字 | 超碰av男人的天堂一区二区 | 99久久久久精品国产免费 | 欧美国产日本精品一区二区三区 | 免费看片A级毛片免费看 | a级日本片在线观看 | 丝袜国产日韩欧美一区 | 久久成人小视频 | 日日夜精品视频免费日日春 | 久久精品亚洲成在人线AV麻豆 | 久久精品出轨人妻国产 | 亚洲国产丝袜一区二区 | 乱伦欧美中文亚洲 | 91欧美激情一区二区三 | 亚洲色偷偷偷综合网另类小说 | 亚州一区二区三区三级片 | 精品久久久久久无码中文字幕 | 激情视频综合网 | 欧美性猛交AAAA片黑人 | 18禁黄网站无码 | 精品国产一二三区 | 精品偷自拍另类 | 国产丝袜美女在线高潮网站 | av无码成人精品国产 | 亚洲国产日本韩国欧美mv | 国产又粗又大又黄 | 人妻精油按摩bd高清中文字 | 88国产精品欧美一区二区三区 | 国色成人免费视频 | 亚洲国产日韩欧美综合a | 中日韩精品视频一区二区三区 | 国产亚洲欧美在线观看三区 | 99精品网站 | a级免费在线毛片 | 韩日午夜在线资源一区二区 | 日韩一区二区三区不卡 | 久久毛片毛片免费天天看 | 蜜臀精品国产高清在线观看 | 婷婷色色狠狠爱 | 丰满的少妇一区二区三区免费观看 | 18成年片免费 | 中文文字幕文字幕亚洲色 | 久久久久久久99蜜桃i | 久久人人槡人妻人人玩夜色AV | 日本三区四区免费高清不卡 | 国产乱视频 | 精品久久aⅴ人妻中文字幕 精品久久av无码 | 欧美日韩国产综合视频在线观看 |