Set as Homepage - Add to Favorites

精品东京热,精品动漫无码,精品动漫一区,精品动漫一区二区,精品动漫一区二区三区,精品二三四区,精品福利导航,精品福利導航。

【ivy aura, stepdad, sex video】What Are Chiplets and Why They Are So Important for the Future of Processors

While chiplets have ivy aura, stepdad, sex videobeen around for decades, their use was historically limited to specific, specialized applications. Today, however, they are at the forefront of technology, powering millions of desktop PCs, workstations, servers, gaming consoles, phones, and even wearable devices worldwide.

In a matter of a few years, most leading chipmakers have embraced chiplet technology to drive innovation. It's now clear that chiplets are poised to become the industry standard. Let's explore what makes them so significant and how they're shaping the future of technology.

TL;DR: What Are Chiplets?

Chiplets are segmented processors. Instead of consolidating every part into a single chip (known as a monolithic approach), specific sections are manufactured as separate chips. These individual chips are then mounted together into a single package using a complex connection system.

This arrangement allows the parts that can benefit from the latest fabrication methods to be shrunk in size, improving the efficiency of the process and allowing them to fit in more components.

The parts of the chip that can't be significantly reduced or don't require reduction can be produced using older and more economical methods.

While the process of manufacturing such processors is complex, the overall cost is typically lower. Furthermore, it offers processor companies a more manageable pathway to expand their product range.

Silicon Science

To fully understand why processor manufacturers have turned to chiplets, we must first delve into how these devices are made. CPUs and GPUs start their life as large discs made of ultra-pure silicon, typically a little under 12 inches (300 mm) in diameter and 0.04 inches (1 mm) thick.

This silicon wafer undergoes a sequence of intricate steps, resulting in multiple layers of different materials – insulators, dielectrics, and metals. These layers' patterns are created through a process called photolithography, where ultraviolet light is shone through an enlarged version of the pattern (a mask), and subsequently shrunk via lenses to the required size.

The pattern gets repeated, at set intervals, across the surface of the wafer and each of these will ultimately become a processor. Since chips are rectangular and wafers are circular, the patterns must overlap the disc's perimeter. These overlapping parts are ultimately discarded as they are non-functional.

Once completed, the wafer is tested using a probe applied to each chip. The electrical examination results inform engineers about the processor's quality against a long list of criteria. This initial stage, known as chip binning, helps determine the processor's "grade."

For instance, if the chip is intended to be a CPU, every part should function correctly, operating within a set range of clock speeds at a specific voltage. Each wafer section is then categorized based on these test results.

Upon completion, the wafer is cut into individual pieces, or "dies," that are viable for use. These dies are then mounted onto a substrate, akin to a specialized motherboard. The processor undergoes further packaging (for instance, with a heat spreader) before it's ready for distribution.

The entire sequence can take weeks of manufacturing and companies such as TSMC and Samsung charge high fees for each wafer, anywhere between $3,000 and $20,000 depending on the process node being used.

"Process node" is the term used to describe the entire fabrication system. Historically, they were named after the transistor's gate length. However, as manufacturing technology improved and allowed for ever-smaller components, the nomenclature no longer followed any physical aspect of the die and now it's simply a marketing tool.

Nevertheless, each new process node brings benefits over its predecessor. It might be cheaper to produce, consume less power at the same clock speed (or vice versa), or have a higher density. The latter metric measures how many components can fit within a given die area. In the graph below, you can see how this has evolved over the years for GPUs (the largest and most complex chips you'll find in a PC)...

The improvements in process nodes provide a means for engineers to increase the capabilities and performance of their products, without having to use big and costly chips. However, the above graph only tells part of the story, as not every aspect of a processor can benefit from these advancements.

Circuits inside chips can be allocated into one of the following broad categories:

  • Logic – handles data, math, and decision-making
  • Memory – usually SRAM, which stores data for the logic
  • Analog – circuits that manage signals between the chip and other devices

Unfortunately, while logic circuits continue to shrink with every major step forward in process node technology, analog circuits have barely changed and SRAM is starting to reach a limit too.

While logic still forms the largest portion of the die, the amount of SRAM in today's CPUs and GPUs has significantly grown in recent years. For example, AMD's Vega 20 chip used in its Radeon VII graphics card (2019), featured a combined total of 5 MB of L1 and L2 cache. Just two GPU generations later, the Navi 21 chip powering the Radeon RX 6000 series (2020), included over 130 MB of combined cache – a remarkable 25-fold increase.

We can expect these to continue to increase as new generations of processors are developed, but with memory not scaling down as well as the logic, it will become increasingly less cost-effective to manufacture all of the circuitry on the same process node.

In an ideal world, one would design a die where analog sections are fabricated on the largest and cheapest node, SRAM parts on a much smaller one, and logic reserved for the absolute cutting-edge technology. Unfortunately, this is not practically achievable. However, there exists an alternative approach.

Divide and Conquer

In 1995, Intel introduced the Pentium II, a successor to its original P5 processor. What set it apart from other processors at the time was the design hidden beneath its plastic shield: a circuit board housing two chips. The main chip contained all the processing logic and analog systems, while one or two separate SRAM modules served as Level 2 cache.

While Intel manufactured the primary chip, the cache was sourced from external suppliers. This approach became fairly standard for desktop PCs in the mid-to-late 1990s, until advances in semiconductor fabrication allowed logic, memory, and analog systems to be fully integrated into a single die.

While Intel continued to dabble with multiple chips in the same package, it largely stuck with the so-called monolithicapproach for processors – i.e., one chip for everything. For most processors, there was no need for more than one die, as manufacturing techniques were proficient (and affordable) enough to keep it straightforward.

However, other companies were more interested in following a multi-chip approach, most notably IBM. In 2004, it was possible to purchase an 8-chip version of the POWER4 server CPU that comprised four processors and four cache modules, all mounted within the same body (known as a multi-chip moduleor MCM approach).

Around this time, the term "heterogeneous integration"started to appear, partially due to research work done by DARPA. Heterogeneous integration aims to separate the various sections of a processing system, fabricate them individually on nodes best suited for each, and then combine them into the same package.

Today, this is better known as system-in-package(SiP) and has been the standard method for equipping smartwatches with chips from their inception. For example, the Series 1 Apple Watch houses a CPU, some DRAM and NAND Flash, multiple controllers, and other components within a single structure.

A similar setup can be achieved by having different systems all on a single die (known as an SoC or system-on-a-chip). However, this approach doesn't allow for taking advantage of different node prices, nor can every component be manufactured this way.

For a technology vendor, using heterogeneous integration for a niche product is one thing, but employing it for the majority of their portfolio is another. This is exactly what AMD did with its range of processors. In 2017, the semiconductor giant introduced its Zen architecture with the launch of the single-die Ryzen desktop CPU. Just a few months later, AMD debuted two multi-chip product lines: Threadripper and EPYC, with the latter featuring configurations of up to four dies.

With the launch of Zen 2 two years later, AMD fully embraced HI, MCM, SiP – call it what you will. They shifted the majority of the analog systems out of the processor and placed them into a separate die. These were manufactured on a simpler, cheaper process node, while a more advanced one was used for the remaining logic and cache.

And so, chiplets became the buzzword of choice.

Smaller is Better

To understand exactly why AMD chose this direction, let's examine the image below. It showcases two older CPUs from the Ryzen 5 series – the 2600 on the left, employing the so-called Zen+ architecture, and the Zen 2-powered 3600 on the right.

The heat spreaders on both models have been removed, and the photographs were taken using an infrared camera. The 2600's single die houses eight cores, though two of them are disabled for this particular model.

This is also the case for the 3600, but here we can see that there are two dies in the package – the Core Complex Die (CCD) at the top, housing the cores and cache, and the Input/Output Die (IOD) at the bottom containing all the controllers (for memory, PCI Express, USB, etc.) and physical interfaces.

Since both Ryzen CPUs fit into the same motherboard socket, the two images are essentially to scale. On the surface, it might seem that the two dies in the 3600 have a larger combined area than the single chip in the 2600, but appearances can be deceiving.

If we directly compare the chips containing the cores, it's clear how much space in the older model is taken up by analog circuitry – it's all the blue-green colors surrounding the gold-colored cores and cache. However, in the Zen 2 CCD, very little die area is dedicated to analog systems; it's almost entirely composed of logic and SRAM.

The Zen+ chip has an area of 213 mm2 and was manufactured by GlobalFoundries using its 12nm process node. For Zen 2, AMD retained GlobalFoundries' services for the 125 mm2 IOD but utilized TSMC's superior N7 node for the 73 mm2 CCD.

The combined area of the chips in the newer model is smaller, and it also boasts twice as much L3 cache, supporting faster memory and PCI Express. The best part of the chiplet approach, however, was that the compact size of the CCD made it possible for AMD to fit another one into the package. This development gave birth to the Ryzen 9 series, offering 12 and 16-core models for desktop PCs.

Even better, by using two smaller chips instead of one large one, each wafer can potentially yield more dies. In the case of the Zen 2 CCD, a single 12-inch (300 mm) wafer can produce up to 85% more dies than for the Zen+ model.

The smaller the slice one takes out of a wafer, the less likely one is going to find manufacturing defects (as they tend to be randomly distributed across the disc), so taking all of this into account, the chiplet approach not only gave AMD the ability to expand its portfolio, it did so far more cost-effectively – the same CCDs can be used in multiple models and each wafer produces hundreds of them!

But if this design choice is so advantageous, why isn't Intel doing it? Why aren't we seeing it being used in other processors, like GPUs?

Following the Lead

To address the first question, Intel has been progressively adopting chiplet technology as well. The first consumer CPU architecture they shipped using chiplets is called Meteor Lake. Intel's approach is somewhat unique though, so let's explore how it differs from AMD's approach.

Using the term tilesinstead of chiplets, this generation of processors split the previously monolithic design into four separate chips:

  • Compute tile: Contains all of the cores and L2 cache
  • GFX tile: Houses the integrated GPU
  • SoC tile: Incorporates L3 cache, PCI Express, and other controllers
  • IO tile: Accommodates the physical interfaces for memory and other devices

High-speed, low-latency connections are present between the SoC and the other three tiles, and all of them are connected to another die, known as an interposer. This interposer delivers power to each chip and contains the traces between them. The interposer and four tiles are then mounted onto an additional board to allow the whole assembly to be packaged.

Unlike Intel, AMD does not use any special mounting die but has its own unique connection system, known as Infinity Fabric, to handle chiplet data transactions. Power delivery runs through a fairly standard package, and AMD also uses fewer chiplets. So why is Intel's design as such?

One challenge with AMD's approach is that it's not very suitable for the ultra-mobile, low-power sector. This is why AMD still uses monolithic CPUs for that segment. Intel's design allows them to mix and match different tiles to fit a specific need. For example, budget models for affordable laptops can use much smaller tiles everywhere, while AMD only has one size chiplet for each purpose.

The downside to Intel's system is that it's complex and expensive to produce (which has lead to different kind of issues). Both CPU firms, however, are fully committed to the chiplet concept. Once every part of the manufacturing chain is engineered around it, costs should decrease.

When it comes to GPUs, they contain relatively little analog circuitry compared to the rest of the die. However, the amount of SRAM inside has been steadily increasing. This trend prompted AMD to leverage its chiplet expertise in the Radeon 7000 series, with the Radeon RX 7900 GPUs featuring a multi-die design. These GPUs include a single large die for the cores and L2 cache, along with five or six smaller dies, each containing a slice of L3 cache and a memory controller.

By moving these components out of the main die, engineers were able to significantly increase the amount of logic without relying on the latest, most expensive process nodes to keep chip sizes manageable. While this innovation likely helped reduce overall costs, it did not significantly expand the breadth of AMD's graphics portfolio.

Currently, Nvidia and Intel consumer GPUs are showing no signs of adopting AMD's chiplet approach. Both companies rely on TSMC for all manufacturing duties and seem content to produce extremely large chips, passing the cost onto consumers.

That said, it is known that both are actively exploring and implementing chiplet-based architectures in some of their GPU designs. For example, Nvidia's Blackwell data center GPUs utilize a chiplet design featuring two large dies connected via a high-speed interlink capable of 10 terabytes per second, effectively functioning as a single GPU.

Getting 'Moore' with Chiplets

No matter whenthese changes occur, the fundamental truth is that they musthappen. Despite the tremendous technological advances in semiconductor manufacturing, there is a definite limit to how much each component can be shrunk.

To continue enhancing chip performance, engineers essentially have two avenues – add more logic, with the necessary memory to support it, and increase internal clock speeds. Regarding the latter, the average CPU hasn't significantly altered in this aspect for years. AMD's FX-9590 processor, from 2013, could reach 5 GHz in certain workloads, while the highest clock speed in its current models is 5.7 GHz (with the Ryzen 9 9950X).

Intel's highest-clocked consumer CPU is the Core i9-14900KS, featuring a maximum turbo frequency of 6.2 GHz on two cores. This "special edition" processor holds the record for the fastest out-of-the-box clock speed among desktop CPUs.

However, what haschanged is the amount of circuitry and SRAM. The aforementioned AMD FX-9590 had 8 cores (and 8 threads) and 8 MB of L3 cache, whereas the 9950X boasts 16 cores, 32 threads, and 64 MB of L3 cache. Intel's CPUs have similarly expanded in terms of cores and SRAM.

Nvidia's first unified shader GPU, the G80 from 2006, consisted of 681 million transistors, 128 cores, and 96 kB of L2 cache in a chip measuring 484 mm2 in area. Fast forward to 2022, when the AD102 was launched, and it now comprises 76.3 billion transistors, 18,432 cores, and 98,304 kB of L2 cache within 608 mm2 of die area.

In 1965, Fairchild Semiconductor co-founder Gordon Moore observed that in the early years of chip manufacturing, the density of components inside a die was doubling each year for a fixed minimum production cost. This observation became known as Moore's Law and was later interpreted to mean "the number of transistors in a chip doubles every two years", based on manufacturing trends.

Moore's Law has served as a reasonably accurate representation of the semiconductor industry's progress for nearly six decades. The tremendous gains in logic and memory in both CPUs and GPUs have largely been driven by continuous improvements in process nodes, with components becoming progressively smaller over time. However, this trend cannot can't continue forever, regardless of what new technology comes about.

Rather than waiting for these physical limits to be reached, companies like AMD and Intel have embraced chiplet technology, exploring innovative ways to combine these modular components to sustain the creation of increasingly powerful processors.

Decades in the future, the average PC might be home to CPUs and GPUs the size of your hand. But, peel off the heat spreader and you'll find a host of tiny chips – not three or four, but dozens of them, all ingeniously tiled and stacked together. The dominance of the chiplet has only just begun.

Keep Reading. Explainers at TechSpot

  • Meet Transformers: The Google Breakthrough that Rewrote AI's Roadmap
  • Why Are Modern PC Games Using So Much VRAM?
  • Is the Ryzen 9800X3D Truly Faster for Real-World 4K Gaming?
  • Number Representations in Computer Hardware, Explained

0.1322s , 14232.8046875 kb

Copyright © 2025 Powered by 【ivy aura, stepdad, sex video】What Are Chiplets and Why They Are So Important for the Future of Processors,Info Circulation  

Sitemap

Top 人妻体内射精一区二区三 | 亚洲 欧美 综合 高清 在线 | 久久婷婷六月综合色液啪 | 久久精品伊人网 | 精品久久伊人 | 欧美一级日韩在线观看 | 免费看一级a片在线观看 | 国产短裙高跟肉丝在线观看 | 亚洲一区综合图区 | 亚洲欧美视频一级 | 少妇人妻无码专区视频大码 | 国av在线观看 | 国产午夜精品影院 | 国产成a人亚洲精v品无码性色 | 91在线免费观看网站 | 久久伊人久久 | 日韩ed2k | 热の综合热の国产热の潮在线 | 麻豆果冻传媒新 | 一区二区三区免费看A片 | 国产 欧美 日韩 综合网 | 国产成人一区二区三区果冻传媒 | 人妻无码a∨中文字幕 | 999精品国产人妻无码系列 | 四虎亚洲精品高清在线观看 | 国产午夜在线观看视频播放 | 久久中文字幕综合不卡一二区 | 国产乱码卡二卡三卡43 | 精品国产90后在线观看 | 成人黄18免费视频 | 高潮是mamamama的韩文歌 | a级毛片毛片免费观看永久 a级毛片毛片免费看 | 人妻精品久久久久中文字幕一冢 | 国产婷婷色一区二区三区在线 | 吃奶呻吟打开双腿做愛 | 国产成人99 | 国产三级电影在线观看一区二区三 | 精品麻豆一区二区三区乱码 | 香婷婷一区二区精品久久 | 国产v欧美日韩v | AV亚洲AV永久无码精品网 | 国产h视频在线观看视频 | 狠狠色成人综合网图片区 | 91亚洲国产| 国产麻豆福利 | 久久国产精品免费 | 成人无码a级毛片免费 | 欧美激情一区二区三区AA片 | 2024亚洲va在线va天堂v | 国产啪在线 | 国产精品成人小电影在线观 | 亚洲国产精品免费无码 | 成a人片在线观看无码 | 日韩va亚洲va欧美va久久 | 国产av国片精品一区二区 | 人人干人人操导航 | 韩国三级伦理久久影院 | 色情毛片AAAAAA片 | 国产精品亚洲一区二区无码国产 | 三级网址在线观看 | 国产传媒18精品A片熟女 | 国产高清不卡专区在线观看 | www国产内插视频 | 狠狠色噜噜 | www精品一区二区三区四区 | 被cao哭高H调教1v1H | 久久精品亚洲一区二区三区浴池 | 亚洲精品久久AV无码麻小说 | 国产精品91一线天 | 欧美天天插天天干天天骚 | 日韩精品中文字幕在线观看 | 蝌蚪自拍自窝 | 日韩毛片无码中文专区 | 国产精品亚洲欧美大片在线 | 永久在线精品免费视频观看 | 亚洲第一永久免费网站国内 | 欧美性生交BBBXXXXX无码 | 亚洲人成在线播放网站 | 国产精品毛片久久久久久 | 久久男女 | 无码一区二区精品午夜精品视频 | chinese激烈高潮hd | 日韩欧美国产高清在线观看 | 亚洲av元码天堂一区二区三区 | 国产伦子沙发午休 | 2024日本三级电影免费在线播放 | 中文日韩国产字幕亚洲 | 欧美69久成人做爰视频 | 欧美日韩精品一区二区在 | 欧美另类精品xxxx孕妇 | 中文字幕无码久久精品青草 | 特级做A爰片毛片免费看108 | 国产成人福利在线观看视频 | 波多野结衣番号 | 久久黄色影片 | 久久久国产成人精品蜜臀a 久久久国产成人一区二区 久久久国产打桩机 | 成人精品一级毛片 | 国产午夜大秀一区二区三区 | 91精品国语高清自产拍 | 久久久久亚洲av成人片一级毛片 | 国产精品成人片一区在线观看 | 日本一品道无码免费专区在线观看 | 欧美变态杂交xxx | 国产精品无码av在线播放 | 国产黄在线观看免费观看不卡 | 日本妈妈黄色片 | 亚洲国产精品日本无码网站 | 青草青华人在线观看视频 | 精品久久一区三区二区蜜臀 | 国产日产亚洲系列首页 | 国内精品一区二区三区视频 | 成人精品区一本二本 | 三级中文字幕 | 羞羞答答综合网 丫丫色导航 | 国产自产对白一区 | 亚洲欧美中文日韩在线 | 亚洲一区二区三区秋霞秋理 | 国产h精品在线观看 | 久久99中文字幕伊人 | 久久久久夜色精品波多野结衣 | 精品成人毛片一区二区视 | 久久综合香蕉久久久久久久 | 国产免费成人久久 | av片在线观看无码免费 | 91探花在线 | 18禁成年无码免费网站无遮 | 亚洲午夜精品一级在线播放 | 国产aⅴ无码专区久久精品国产 | 亚洲欧美一区二区三区国产另类 | 国产精品人妻一区夜夜爱 | 蜜芽视频精品无码福利一区二区 | 国产av一区二区三区传媒短片 | 97久久久久人妻精品区一 | 中文字幕 久久久 | 国产成人av在线影院 | 波多野结衣一区二区在线 | 中文字幕av一区二区三区人妻少妇 | 国外欧美一区另类中文字幕 | 亚洲熟妇av午夜无码不卡 | 偷拍视频精品一区二区三区 | 中文字幕大香视频蕉免费 | 精品国产片免费在 | 999精品免费视频网站 | 2024无码高潮喷水A片 | 男人站影音先锋男人站 | 久久国产露脸精品国产麻豆 | 97密挑| 日韩精品无码免费一区二区三区 | 无码人妻一区二区三区密桃手 | 亚洲国产精品日本无码小说 | 成年女人免费影院播放 | 亚洲国产精品VA在线看黑人 | 欧美最骚最疯日B视频观看 欧美做愛坉片 | 国产肥白大熟妇BBBB视频 | 精品国产成人av婷婷在线看 | 亚洲精华国产精华精华 | 欧美日韩国产一区三区 | 日本亚洲国产中文一区二区三区 | 国产精品日韩在线观看一区二区 | 国产乱码精品一区二区三区四川人 | 欧美日韩精品视频一区在 | 国产中文亚洲日韩欧美 | 精品久久久久一区二区三区 | 日韩精品一区二区三区中文不卡 | 777亚洲精品自在在线观看 | 国产99精品视频一区二区三区 | 蜜桃色永久入口 | 久久精品亚洲一区二区 | www.麻豆.com| 国产欧美日韩在线视频重口味 | 亚洲av一级在线日韩高清 | 香蕉久久国产AV一区二区 | 无码调教一区二区 | 国产精品v欧美精品v日本精品动漫 | 亚洲精品欧美一区二区三区 | a精品无码免费看 | 成人无码免费视频 | 国产高清免费视频免费观看 | 毛片新网址 | 在线免费观看视频成人 | 国产精品久久国产精品99 | 国产精品久久综合桃花网 | 偷拍中国熟妇乱xxxxx | 海角国精产品一区一区三区糖心推荐 | 俺也来俺也去俺也射 | 免费看日韩A片无码视频软件 | 人妻无码第一区二区三区 | 在线精品国产一区二区 | 女同久久精品国产99国产精品 | 久久久久成亚洲综合精品 | 国产日韩久久久精品影院首页 | 久久久久久久中文字幕 | 中文字幕无码一区二区三四区 | 国产午夜精品一区二区三区不卡 | 丁香视频在线 | w色综合久久精品中文字幕 | 国产精品无打码在线播放 | 亚洲美色欧美日韩在线 | 国产成人精品一区理论在线 | 亚洲岛国v无码无遮挡在 | 被黑人强上但高潮 | 综合久久久久综合97色 | 国产欧美韩国日本一区 | 日本亚洲| 色综合中文综合网 | 中文一区| 亚洲欧美日韩国产精品一区二区 | 国内精品久久久久影院一蜜桃 | 国产亚洲人成网站在线观看播放 | 蜜臀aⅴ人妻久久无码精品麻豆 | 极品美女在线观看国产一区 | 国产精品无码无卡毛片不卡视 | 九一国产在线观看 | 国产av无码精品色午夜 | 精品国产福利一区二区在线 | 波多野结衣国产一区二区在线观看 | 忘忧草在线影院WWW日本社区 | 91精品国产乱码久久无码 | 福利天堂 | 四虎精品成人影院在线观看 | 欧美精品国产综合久久 | 丰满少妇高潮掺叫无码 | 国产成人欧美一区二区三区vr | 越猛烈欧美xx00动态图免费 | 国产成人无码a区在线观看免 | 大尺度做爰啪啪床戏男人小说 | 九一毛片 | 人妻系列无码专区在线视频 | 污污内射一区二区三区 | 久久精品美女久久 | 午夜无码久久久久蜜臀av | 97色伦久久视频在观看 | 国产精品自拍av在线播放 | 日韩一区二区国产 | 亚洲精品国产第一区二区多人 | chinese国产高清av | 久久只这里是精品66 | 日韩无码动漫一区二区三区 | 国产最新免费高清在线视频 | 亚洲国产欧美日韩一区二区三区 | 午夜A理论片在线播放 | 久久免费国产无码资源 | 在线观看无码视频 | 四虎国产精品永久地址入口 | 91精品久久久无码中文字幕vr | 国产丝袜一区二区三区 | 国产无人区一码二码三码区别 | 精品三级国产 | 日本 一 级 视频 | 国产亚洲精品久久久一区 | 麻豆网| 国产成人福利精品在线观看 | 国产人妻无码专区精品 | 国产三级全黄在线观看 | 国产三级视频在线观看视 | 成人区人妻精品一区二欧美毛片 | av无码岛国免费动作片美女跪求资源欧美 | 国产综合日韩另类一区二区 | 无码人妻一区二区免费看 | 国产欧美日韩精品在线 | 天天干在线色视频 | 精品国产精品久久一区免费式 | 午夜不卡久久精品无码免费 | 中文国产成人精品少久久 | 中文日本永久精品国视频 | 国产精品亚洲欧美一区麻豆 | 麻豆传煤免费网站入在线观看 | 亚洲伊人成综合网色777 | 国内精品久久久久影院中文字幕 | 国产超高清麻豆精品传媒麻豆精品 | 亚洲欧美一区二区成人片 | 欧美激情一区二区三区蜜桃视频 | 亚洲日韩国产精品第一页一区 | 久久中文字幕无码专区 | 91久久国产精品视频 | av无码午夜福 | 精品亚洲欧美无人区乱码 | 国产成人亚洲影院在线观看 | 国产三级级在线观看大学生 | 国产精品无码久久久久 | 精品日韩国产欧美在线观看 | 麻豆文化传媒有限 | 精品国产第一区二区三区 | 国产精品毛片在线完整版的 | 欧美日韩精品一区二区在线观看 | 隔壁邻居大乳在线播放 | 成年美女视频网站免费大 | 成人h动漫在线播放本动漫 成人h片 | 动漫高清在线观看 | 日本真人边吃奶边做爽免费视频 | 精品国产午夜福利在线观看 | 成人午夜一区二区三 | 亚洲饱满人妻视频 | 久久久久小草精品免视看 | 5566在线资源 | 精品无人区一区二区三区的特点 | 国产a精品一区二区三区不 国产a精品一区二区三区不卡 | 欧美丰满美乳xx高潮www | 久久国产精品视频91久久 | 2024国产精品成人 | 亚洲黄色性爱在线观看 | 女同蕾丝边 | 亚洲精品久久久久久一区 | 日本aⅴ精品一区二区三区久久 | 成年女人日韩字幕在线播放 | 国产成人av在线影院无毒 | 黄色在线网站 | 日本视频一区二区 | 四虎影视成人精品永久免费观看 | 波多野无码中文字幕av专区 | 亚洲日本中文字幕乱码在线 | a级全黄30分钟免费视频 | 日木欧美一区二区 | 制服丝袜欧美日韩国产 | 亚洲午夜精品一区二区 | 精品系列一区二区三区 | 亚洲AV无码精品蜜桃 | 国产成人福利视频在线观看 | 国产精品无码制服丝袜 | 久久无码中文字幕免 | 人妻无码精品久久亚瑟影视 | 日本高清视频不卡 | 国产麻豆精品福 | ww成年免费看视频 | a级日本乱理伦 | 无码精品人妻一区二区三区影院 | 女人18毛片水真多免费播放 | 开心久久婷婷综合中文字幕 | 亚洲中文字幕婷婷在线 | 午夜国产视频 | 97色吧 | 色婷婷香蕉在线一区二区蜜月视频 | 国产激情无码在线综合 | 日韩aⅴ亚洲欧美一区二区三区 | 东京一本熟到无码视频 | 亚洲成av人最新无码 | 久久麻豆亚洲精 | 中文字幕高清大全 | 国产精品爽爽久久久久久无码 | 韩国三级视频网站 | 欧美丰满熟妇 | 欧美色偷偷亚洲天堂bt | 日本无翼乌邪恶大全彩男男 | 欧美性生交18无码 | 麻豆国产av巨作国产剧情 | 国产精品色情国产三级在线观 | 国产精品白嫩初高中害羞小美女 | 日本无码免费一区二区不卡的视频 | 亚洲AV久久婷婷蜜臀无码不卡 | 午夜网未来影院 | 国产XXXXX精品AV青椒 | av无码国产在线观看岛国 | 国产又粗又黄又爽的A片精华 | 东京无码熟妇人妻av在线网址 | 亚洲精品国偷拍自产在线观看蜜臀 | 人与嘼在线A片观看免费 | 国产成人无码精品久久久露脸 | 人妻不敢呻吟被中出A片视频 | 精品丰满人妻AV久久久 | 国产精品久久久久久久人人看 | 巨胸爆乳美女露双奶头挤奶 | 波多野无码中文字幕av专区 | 精选国内外好片免费收看 | 天天躁日日躁狠狠躁AV麻豆 | 日本小视频免费 | 欧美日韩在线亚洲一区二区三区 | 国产日韩久久久精品影视 | 国产精品无码国模私拍视频 | 久久久91人妻无码精品蜜桃hdgv欧美男男亚洲 | mv字幕免费高清在线7字幕免费看2 | 无码免费视频AAAAAA片草莓 | 国产成人精品高清国产三级 | 中文字幕在线永久在线视频2020 | 无码人妻精一区二区三区 | 久久精品亚洲精品国产色婷 | 东京热一频道一区二区三区 | 日韩一区二区三区无码人 | 精品一区二区三区在线观看l | 人妻少妇被猛烈进入中文字幕 | 日本在线不卡免费视频 | 久久久久久精品中文无码dvd | 成人av毛片无码免费网站 | 日韩精品免费一区二区三区视频 | 亚洲高清一区二区三区不卡 | 人与动动物xxxx毛片人与狍 | 国产精品一区2区三区内射 国产精品一区AV在线播放 | 中文字幕日韩精品有码视频 | 国产精品毛片在线完整版的 | 日本xxxx高清色视频在线播放 | 国产一区二区韩国一区二区日本一区二区 | 2018日日摸夜夜添狠狠躁 | 精品国产污污免费网站入口 | 欧美综合在线看資源免費看 | 国产精品一区二区资源 | 成人午夜人妻一区二区 | 国语熟妇乱人伦A片久久 | 四虎影视免费大全 | 国产精品久久久久久麻豆一区 | japanese日本丰满少妇 | 国产成a人亚洲精v品久久网 | 成人免费视频在线观看 | 国产精品制服丝袜亚洲欧美 | 无码精品人妻一区二区三区影院 | 日韩欧美中文字幕无码 | 国产成人精品久久亚洲高清不卡 | 亚洲av无码乱码国产精品桃色 | 综合国产免费拔擦拔擦8x高清在线人 | 无码欧美一区二区三区 | 欧美一级做影片爱橙影院 | aⅴ免费在线观看 | 精品国产一区二区三区久久久狼 | 91麻豆视频 | 亚洲精品无码成人A片色欲 亚洲精品无码成人A片在 | 亚洲成a∨人片在线观看不卡 | 99久久免费国产精品特黄 | 美女性生活片 | 九九久久国产 | 成人无码国产 | 国产精品美女免费视频观看 | 91麻豆天美精东蜜桃传电影在线观看 | 丁香六月狠狠激情综合基地 | 少妇人妻综合久久中 | 欧美日本一道免费一区三区 | 亚洲国产成人一区二区在线 | 99青草视频免费观看 | 欧美精品国产精品日韩电影 | 欧美亚洲日韩国产在线在线 | 久久国产精品大屁股白浆一区二区 | 苍井空高潮喷水 | 亚洲欧美乱日韩乱国产 | 欧美孕妇乳喷奶水在线观看 | 久久国产亚洲精品超碰热风 | 国产69成人免费视频观看 | 亚洲国产精品成人va在线观看 | 日韩一区二区三区视频在线观 | 99亚洲国产精品一区二区 | 中文字幕av一区二区三区在线观看 | 国产亚洲av综合人 | 国产亚洲另类无码专区 | 人妻少妇精品无码专区芭乐视网 | 性欧美video高清 | 久久综合五月开心婷婷深深爱 | 国产成人无码精品久久久免 | 91婷婷精品国产综合久久 | 国产日韩精品久久久一区二区 | 福利一区二区高清视频 | a级毛片影院不卡午夜一区成人 | 91精品无码久久久久久久久 | 国产在线视频你懂得 | 国产又大又硬又粗 | 日本欧美一区二区三区在线 | 1区2区3区4区产品乱码不卡 | 国产女同视频 | 无码专区人妻诱中文字 | 无码福利一区 | 五月天国产 | 成人免费又大又爽A片视频 成人免费在线观看视频 | 爱爱帝国亚洲一区二区三区 | 国产成人自拍高清在线 | 国产亚洲日韩欧美在线 | 亚洲偷自拍国综合 | 被群CAO的合不拢腿H小说 | 日韩成人A片一区二区三区 日韩成人不卡福利一区二区 | 熟女视频人妻欧美国产精品麻豆成人av电影 | 成人av一区二区三区日韩 | 天堂在线免费视频 | 国产精品不卡在线观看的a站 | 国产成人精品高清在线观看99中文字幕av在线 | 麻豆91精品91久久久的内涵 | 成人国产精品日本在线 | 麻豆国产精品色欲AV亚洲三区 | 日韩亚洲第九页亚洲色图激情校园 | 无码专区人妻系列日韩精品少妇 | 中文字幕无码精品亚洲资源网 | 国产午夜精品一区二区三区小 | 天天视频入口一区二区 | 99热精品久久只有精品 | 亚洲一区二区三区四区 | 亚洲欧美人成无码苍井空 | 四虎影院在线观看免费 | 好硬啊进去太深了A片 | 国产又色又爽又免费的刺激软件 | 色综合成人 | 99热这里只有精品最新地址 | 欧美在线一中文 | 2024年最新伦理片大全免费在线观看 | 久久精品亚洲精品国产区美 | 丁香五月天婷婷激情亚洲综 | 成人做爰视频WWW网站 | 五月天堂日本影院 | 国产毛片在线 | 日本欧美国产在线观看第一页 | 欧美亚洲国产激情在线 | 国产内射在线激情一区 | 忘忧草社区WWW日本高清图片 | 一本色道无码道在线观看 | 国产欧美日韩综合视频在线观看 | 久久综合丝袜日本网首页 | 国产美女a做受大片免费 | 国产高清国内精品福利色噜噜 | 一本久久a久久精品综合麻豆 | 国产美女人人人妻 | 黑巨人与欧美精品一区 | 国产v片免费播放 | 伊人色综合网一区二区三区 | 欧美午夜视频一区二区 | 久久精品伊人波多野结衣 | 精品日韩国产无码一区二区 | 亚洲日本在线播放 | 国产v综合v亚洲欧美久久 | av中文字幕免费放 | 久久九九久精品国产综合一千收藏 | 精品乱码一区二区三区四区 | 国产三级精品免费 | 国产av1插花菊综合网 | 欧美不卡精品中文字幕日韩 | 国内精品 大秀视频 日韩精品 | 国产福利区一区二在线观看 | 久久中文字幕不卡一二区 | 国产人成激情视频在线观看 | 亚洲成眠在线观看毛卡片 | 国产精品久久久久久久免费 | 99久热精品免费观看四虎 | 国产亚洲综合激情校园小说 | 国产精品午夜无码av体验区 | 熟妇人妻中文字幕无码老熟妇 | 国产福利午夜波多野结衣 | 日韩精品一区在线观看 | 亚洲欧美国产精品久久久 | 国产成人无码aa片免费看 | 国产成人高精品免费软件 | 久久久久久亚洲av无码专区 | 被拖进小树林C了好爽H出租车 | 97久久久久人妻 | 国产成人无码一区二区在线观看 | 日韩精品无码免费一区二区三区 | jizz日本老师jizz在线播放 | 少妇人妻综合久久中 | 国产精品中文久久久久久 | 欧美在线三级艳情网站 | 麻豆精品在线播放 | chinese国产a精品综合老师高潮xxxx | 国产三级精品三级在线专区 | 国色天香视频社区手机版 | 国产精品不卡在线一区二区 | 国产亚洲精品久久一区二区三区 | 日本成本人片无码免费网站 | 国产成a人亚洲精v品无码 | 国产精品久久久天天影视香蕉 | 精品国产一区二区三区四区五区 | 国产一国产一级毛片视频 | 欧美精品黑人粗大免费 | 91精品啪啪网站无需下载在线观看 | 中文字幕视频二区人妻 | 91精品啪在线观看国产爱臀 | 日本三级 | 日本成人动漫私人影院 | 免费人妻精品一区二区三区四区 | 97视频久久久| 无码免费在线观看精品 | 国产精品第3页 | 欧美日韩国产在线人成 | 久久久国产精品无码一区二 | 久久国产亚洲精品超碰热风 | 国产免费九九久久精品一区 | 国产成年人免费黄色视频 | 国产人妻系列无码专区97SS | 亚洲欧美日韩中文字幕久久 | 国产成本人片无码免费网站 | 国产精品人妻一二三区 | av免费播放一区二区三区 | 欧美性猛交xxxx免费 | 亚洲国产精品久久精品成人 | 欧美亚洲一区在线观看 | 夜夜躁狠狠躁日日躁孕妇 | 久久久久中文字幕 | 亚洲国产成人bt天堂 | av无码无在线观看 | 国产成人亚洲影院在线观看 | 亚洲精品国产成人片 | 久热精品视频一区二区三区 | 国产精品一区高清在线观看 | 国产av亚洲aⅴ一区二区小说最新章节列表 | 在线看a片 | 2024年最新无码国产在线视频 | 日本无码高清在线电影 | 久久久久亚洲av无码专区电影 | 爱色成人网 | 99热精品免费观看全部 | 国产一级毛片无码视频中字 | 区一区区三区产品无卡高清在线 | 五月天国产亚洲av麻豆 | 日本老妇乱子伦中文视频 | 东北寡妇特级毛片免费免费漫画你懂得啦啦啦免费视频在线 | 好吊视频一区二区三区 | 日本小视频天堂久久 | 美女天天操 | 亚洲国产精品成人精品A片 亚洲国产精品成人精品软件 | 亚洲综合激情另类小说区 | 99精品人妻无码专区在线视频区 | 中文字幕无码日本欧美大片 | 成人免费AA片在线观看 | 在线播放精品一区二区啪视频 | 国产白丝无码视频在线观看 | 秋霞无码AV久久久精品 | 精品亚洲a无码专区毛片 | 亚洲国产第一区二区三区 | 日本大胆欧美人术艺术 | 亚洲av无一区二区三区久久久 | 熟妇的荡欲色综合亚洲图片 | 二区偷拍美女撒尿视频 | 精品国产一区二区三区四区五区 | 欧美精品亚洲精品日韩 | 2024久久精品国产99国产精品 | 狠狠干狠狠操视频 | 伦理片免费秋霞e | 国产成人亚洲欧美激情 | 人妻无码ⅴ中文字幕日韩 | 丁香五月婷婷综合激情在线 | 99久久精品九九亚洲精品為廣大網友提供最新影片 | 激情婷婷丁香五月色综合 | 久久噜| 国产精品久久久久久影视 | 精品久久日产国产一二三区 | 久热精品视频在线观看 | 麻豆精品视频在线观看 | 亚洲午夜无码毛片AV久久京东热 | 久久久久亚洲av片无码v | 欧美成人a√在线一区二区 欧美成人AAA毛片 | 5566少妇人妻一区二区三区 | 久久99久久精品毛片免费观看 | 亚洲男女一区二区三区 | 朝桐光亚洲专区在线中文字幕 | 日韩免费精品毛片一区二区三区 | 亚洲精品无码久久久久久久 | 婷婷狠狠的狠狠的爱 | 无码人妻精品一区二区三区A片 | 日本无码成人片在线观看波多 | 国产69式视频在线观看 | 911国产自产精品a | 精品无码久久久久久久久 | 国产在线观看91精品2021 | 亚洲欧美日韩v在线观看不 亚洲欧美日韩v中文在线 | 91大神亚洲影视在线 | 99精品国产免费久久国语 | 婷婷中文字幕一区二区三区 | 日本无人区1码2码区别 | 国产高潮流白浆喷水 | 韩国影片爱的色放 | 久久久精品成人国产一区 | 午夜精品久久久久久久久久久久 | 欧美日韩免费专区在线 | 免费入口TIKTOK流连忘返 | 久久久大香菇 | 亚洲一区二区乱码在线观看 | 久久精品国产99久久久 | 特级毛片内射WWW无码 | 久久99九九99九九99精品 | 日韩欧美一卡2卡3卡4卡无卡免费 | 二区chinese中文字幕资源日本ⅹxxx色 | 在线观看国产三级视频 | 久久精品综合视频 | 欧美成日韩欧美在线视频 | 精品欧美国产一区二区三区 | 亚洲av无码成 | 97久久精品无码一区二区天美 | 中文字幕久久久久久久系列 | 亚洲欧美动漫少妇自拍 | 成人网站免费看黄a站视频 成人网站欧美大片在线观看 | 日韩精品无码一区二区免费A片 | 亚洲国产成人精品无码区在线 | 99热只有精品1 | 久久精品国产波多野结衣 | 亚偷熟乱区婷婷综合二区 | 在线播放国产一区二区三区 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久久久免费看成人影片 | 国产成人精品美女在线 | 亚洲亚洲人成网站在线观看 | 欧美日韩免费播放一区二区 | 成人免费无码大片在线观看 | 国产精品三级一区二区三区 | 中文字幕精品区先锋资源 | xxxxxhd69日本护士 | 亚洲成人自拍偷拍在线观看 | 国产精品无码久久久动漫 | 国产精品高潮呻吟AV久久床戏 | 亚洲欧美日韩中文综合v日本 | 久久国产综合久久精 | 亚洲av无码成h人动漫无广告 | 日本丝瓜着色视频 | 精品国产一区二区三区久久狼 | 精品无码久久午夜福利下载 | 和美女同事的电梯一夜 | 日韩精品无码视频一区二区蜜桃 | 国产麻豆精 | 成人精品第一区二区三区 | 2024日韩中文字幕在线不卡 | 91视频免费观看 | 日韩精品人妻v一区二区无 日韩精品人妻精品 | 精品久久蜜芽尤物TV | 日韩人妻无码一区2区3区 | 国产福利萌白酱精品tv一区 | 国产粉嫩在线观看 | 高清另类国产中国在线播放欧美 | 91大神精品全国在线观看 | 国产亚洲精品美女 | 91无码人妻一区二区成人aⅴ | 91久久国产精品视频 | a级春药情欲片在线观看 | 久久久久国产av一区二区高清 | 国产精品亚洲精品一区二区 | 无码视频在线观看免费专区 | 亚洲午夜久久久久中文字幕久 | 午夜精品一区二区三区在线观看 | 欧美国产激情二区三区-免费A片 | 在线毛片一区二区 | 欧美日韩国产手机在线 | fc2个人撮影在线播放 | 国产黄A片在线观看永久免费麻豆 | 国产成版人视频网站免费下 | 18黑白丝水手服自慰喷水网站 | 亚洲色欧美 | 国产无套护士在线观看 | 日韩一区二区三区视频 | 97国产精品手机 | 四虎综合九九色九九综合色 | 国产真实乱子伦新视频 | 久久精品免视着国产成人 | 青青草国产一区二区三区 | 精品中文字幕一区在线 | 日夜操视频 | 九九久久国产精品大片 | 成av人片在线观 | 91精品国产福利在线观 | 久久久久青草线焦综合 | 2024最新久久久视精品爱 | 91精品午夜网站 | 成人午夜AV亚洲精品无码网站 | 日本高清不卡aⅴ免费网站 日本高清不卡码无码v亚洲 | 国内精品在线观看视频 | 成av人久久精品无码 | 亚洲av无码一区二区三区乱子伦 | 欧美日本国产xxxxx视频 | 超碰人人爱人人蜜桃 | 99久久久无码国产精品免费人妻 | 特级做A爰片久久毛片A片喷水 | 任你躁国产自任一区二区三区 | 久久国产精品久久软件 | 在线亚洲精品福利网址导航 | 麻豆精品视频在线观看 | 日本一道综合久久aⅴ免费 日本一道综合色视频 | 国产激情视频在线观看 | 手机中文字幕在线视频 | 夜夜精品无码一区二区三区 | 国产aⅴ一区二区 | 91精品国产一区二区三区左线 | 精品国产产一区二区三区久久 | 碰超在线97renren | 91久久大香线蕉 | 久久国产精品亚洲国产女人 | 91婷婷韩国麻豆一区二区 | 亚洲国产欧美在线 | 欧美大片精品免费永久看nba | 欧美亚洲国产精品蜜芽 | 欧美另类精品xxxx人妖换性 | 国产一区二区不卡在线看 | 国产麻豆三级 | 婷婷激情综合色五月久久 | 伦理片秋霞免费影院 | 成人片黄网站a毛片免费 | 久久精品国产亚洲AV成人 | 日本按摩高清 | 日韩精品久久人人躁人人噜 | 国产欧美日韩精品综合 | 国产女人水真多18毛片18精品 | 久久久精品人妻一区二区三区同人 | 无码人妻一区二区三区 | 久久久九九精品国产毛片A片 | 亚洲一区二区免费 | 国产成人亚洲精品乱码在线观看 | 欧美国产精品va在线观看不卡 | 91污在线观看一区二区三区 | 嫩b人妻精品一区二区三区 嫩草AV久久伊人妇女 | 欧美一区二区三区免费不卡 | 欧美亚洲色综久久精品 | 国产aⅴ天堂亚洲国产av | 久久久精品午夜日韩欧美另类中 | 无码av在专区在线观看 | 国产卡二区三卡乱码 | 日韩免费一区二区三区中文字幕 | 五月丁香啪啪. | 欧美午夜精品A片一区二区HD | 久久久精品日韩免费观看 | 日本国产高清不卡爽日本国产 | 国产精品99久久久久久董美香 | 欧美人妻在线视频一区二区 | 91久久精品国产成人影院 | 国产调教视频在线网站 |