Set as Homepage - Add to Favorites

精品东京热,精品动漫无码,精品动漫一区,精品动漫一区二区,精品动漫一区二区三区,精品二三四区,精品福利导航,精品福利導航。

【?? ??? ??】25 Years Later: A Brief Analysis of GPU Processing Efficiency

The ?? ??? ??first 3D graphics cards appeared 25 years ago and since then their power and complexity have grown at a scale greater than any other microchip found in a PC. Back then, these processors packed around 1 million transistors, were smaller than 100 mm2 in size, and consumed just a handful of watts of electrical power.

Fast forward today, and a typical graphics card might have 14 billion transistors, in a die 500 mm2in size, and consume over 200 W of power. The capabilities of these behemoths will be immeasurably greater than their ancient predecessors, but have they got any better at being efficient with all this tiny switches and energy?

A Tale of Two Numbers

In this article, we'll take a look at how well GPU designers have utilized the increase in die size and power consumption to give us ever more processing power. Before we dive in, you first might to brush up on the components of a graphics card or take a walk through the history of the modern graphics processor. With this information, you'll have a great foundation with which to follow this feature.

To understand how the efficiency of a GPU design has changed, if at all, over the years, we've used TechPowerUp's excellent database, taking a sample of processors from the last 14 years. We've picked this timeframe because it marks the start of when GPUs had a unified shader structure.

Rather than having separate circuits within the chip for handling triangles and pixels, unified shaders are arithmetic logic units that are designed to process all the math required to do any calculation involved in 3D graphics. This allows us to use a relative performance measurement, consistently across the different GPUs: floating point operations per second (FLOPS, for short).

Hardware vendors are often keen to state FLOPS figures as a measure of the peak processing capability of the GPU and while it's absolutely not the only aspect behind how fast a GPU is, FLOPS give us a number that we can work with.

The same is true of die size, which is a measure of the surface area of the processing chip. However, you could have two chips that are the same size, but have vastly differing transistor counts.

For example, Nvidia's G71 (think GeForce 7900 GT) processor from 2005 is 196 mm2in size and contains 278 million transistors; their TU117 released early last year (GeForce GTX 1650), is just 4 mm2larger but has 4.7 billion little switches.

A chart of Nvidia's main GPUs showing changes in transistor density over the years

Naturally, this must mean newer GPU transistors are much smaller than the older chip's, and this is very much the case. The so-called process node – the overall design scale of the manufacturing process used to fabrication the processor – used by hardware vendors has changed over the years, progressively getting smaller and smaller. So we'll analyze the efficiency from the perspective of die density, which is a measure of how many millions of transistors there are per mm2of chip area.

Perhaps the most contentious metric we'll be using is the figure for the GPU's power consumption. We have no doubt that many readers will not like this, as we're using the vendor's stated thermal design power (TDP) value. This is actually a measure (or at least, it's supposed to be) of the amount of heat emitted by the whole graphics card in an average, but high load, situation.

With silicon chips, the power they consume gets mostly turned to heat, but this isn't the reason why using TDP is a problem. It's that different vendors state this number under different conditions, and it's also not necessarily the power consumption whilst producing peak FLOPS. It's also the power value for the whole graphics card, including the onboard memory, although most of it will be the GPU itself.

It is possible to directly measure the power consumption of a graphics card. For example, TechPowerUp does it for their GPU reviews, and when they tested a GeForce RTX 2080 Super, with a vendor-declared TDP of 250 W, they found it averaged at 243 W but peaked at 275 W, during their testing.

But we've stuck with using TDP for the sake of simplicity and we've been somewhat cautious in making any judgements solely based on the processing performance against thermal design power.

We're going to directly compare 2 metrics: GFLOPS and unit die density. One GFLOPS equates to 1,000 million floating point operations per second, and we're dealing with the value for FP32 calculations, done exclusively by the unified shaders. The comparison will take the form of a graph like this:

The x-axis plots GFLOPS per unit TDP, so you want this to be as high as possible: the lower the position along with axis, the less power efficient the chip is. The same is true for the y-axis as this plots GFLOPS per unit die density. The more transistors you have packed into a square mm, the more performance you would expect. So the overall GPU processing efficiency (accounting for the number of transistor, die size, and TDP) increases as you go towards the top-right hand corner of the graph.

Any data points near the top-left are basically saying "this GPU is getting good performance out of die design, but at a cost of using a relatively large amount of power." Going towards the bottom right and it's "good at using power effectively, but the die design isn't generating much performance."

In short, we're defining processing efficiency as how much does the GPU do for the package and power it's got.

GPU Efficiency: TDP vs. Unit Die Density

Without further ado, let's move on to the results:

On face value, the results seem rather scattered about, but we can see a basic pattern: old GPUs, such as the G80 or RV670, are far less efficient compared to newer designs, such as the Vega 20 or the GP102. Which is what you would expect! After all, it would be a pretty poor team of electronic engineers who would go out of their way to constantly design and release new products that are less efficient with each release.

But there are some interesting data points. The first of which are the TU102 and GV100. Both of these are made by Nvidia and can be found in graphics such as the GeForce RTX 2080 Ti and Titan V, respectively.

You could argue that neither GPU was designed for the general consumer market, especially the GV100, as they're really for workstations or compute servers. So although they seem to be the most efficient of the lot, that's what you'd expect for processors designed for specialized markets, that cost vastly more than the standard ones.

Another GPU that sticks out, and somewhat like a sore thumb, is the GP108 – this is another one of Nvidia's chips and is mostly commonly found in the GeForce GT 1030. This low-end product, released in 2017, has a very small processor just 74 mm2in size with a TDP of only 30 W. However, it's relative floating point performance is actually no better than Nvidia's first unified shader GPU, the G80, from 2006.

Across from the GP108 is AMD's Fuji chip that powered its Radeon R9 Fury series. This design doesn't seem to be overly power efficient, especially given that use of High Bandwidth Memory (HBM) was supposed to help in this respect. The Fiji design ran rather hot, which makes semiconductor processors less power efficient due to increased leakage. This is where electrical energy gets lost to the packaging and surroundings, rather than being constrained within the circuitry. All chips leak, but the rate of loss increases with temperature.

Perhaps the most interesting data point is Navi 10: this is AMD's most recent GPU design and is manufactured by TSMC, using their N7 process node, currently the smallest scale used. However, the Vega 20 chip is made on the same node, but it seems to be more efficient, despite being an older design. So, what's going on here?

The Vega 20 (AMD used it only the one consumer graphics card - the Radeon VII) was the last processor made by AMD to use their GCN (Graphics Core Next) architecture. It packs in a huge number of unified shader cores into a layout that focuses heavily on FP32 throughput. However, programming the device to achieve this performance was not easily done and it lacked flexibility.

Navi 10 uses their latest architecture, RDNA, which resolves this issue, but at a cost to FP32 throughput. However, it is a new layout and manufactured on a relatively fresh process node, so we can expect to see efficiency improvements as TSMC develops its process node and AMD updates the architecture.

If we ignore the outliers, the most efficient GPUs in our chart are the GP102 and GP104. These are using Nvidia's Pascal architecture, and can be found in graphics cards such as the GeForce GTX 1080 Ti, GTX 1070, and GTX 1060. The one next to the GP102, but not labelled for the sake of clarity, is the TU104 which uses Nvidia's latest Turing design, and can be found in a raft of GeForce RTX models: 2060, 2070 Super, 2080, 2080 Super, to name a few.

These are also made by TSMC but using a process node specifically designed for Nvidia's products, called 12FFN, which itself is a refined version of the 16FF node.

The improvements focus on increasing die density, while reducing leakage, which would go some way to explaining why Nvidia's GPUs are seemingly the most efficient.

GPU Efficiency: TDP vs. Unit Die Area

We can reduce the impact of process node from the analysis, by replacing the metric of die density with just die area. This gives us a very different picture...

Efficiency increases in the same direction in this graph, but now we can see that some key positions have swapped. The TU102 and GV100 have dropped right down, whereas the Navi 10 and Vega 20 have jumped up the graph. This is because the two former processors are enormous chips (754 mm2and 815 mm2), whereas the latter two from AMD are much smaller (251 mm2and 331 mm2).

If we focus the graph so it only displays the more recent GPUs, and the differences become even more pronounced:

This view strongly suggests that AMD have focused less on power efficiency compared to die size efficiency.

In other words, they've wanted to get more GPU chips per manufactured wafer. Nvidia, on the other hand, appear to have taken the approach where they're designing their chips to be larger and larger (and thus each wafer provides fewer dies), but they're utilizing electrical power better.

So will AMD and Nvidia continue this way with their next GPUs? Well, the former has already stated they're focusing improvement the performance-per-watt ratio in RDNA 2.0 by 50%, so we should see their future GPUs sit further to the right on our chart above. But what about Nvidia?

Unfortunately, they are notorious for keeping very tight lipped about future developments, but we do know that their next processors will be made by TSMC and Samsung on a similar process node to that used for Navi. There have been some claims that we will see a big power reduction, but also a big hike in unified shader count, so we perhaps will see a similar position on the chart for Nvidia.

So How Have GPUs Become More Efficient?

The above is pretty conclusive: over the years, AMD and Nvidia have raised the processing performance per unit die density and unit TDP. In some cases, the increase has been astonishing...

Take Nvidia's G92 and TU102 processors. The first one powered the likes of the GeForce 8800 GT and 9800 GTX, and packs 754 million transistors into a chip 324 mm2in area. When it appeared in October 2007, it was well received for its performance and power requirements.

Eleven years later Nvidia offered us the TU102 in the form of the GeForce RTX 2080 Ti, with nearly 19 billion transistors in an area of 754 mm2– that's 25 times more microscopic components in a surface that's only 2.3 times larger.

None of this would be possible if it wasn't for the work done by TSMC to constantly develop their fabrication technology: the G92 in the 8800 GT was built on a 65 nm process node, whereas the latest TU102 is their special 12FFN scale. The names of the production methods don't really tell us the sense of the difference between the two, but the GPU numbers do. The current one has a die density of 24.67 million transistors per mm2, compared to the old one's value of 2.33 million.

A ten-fold increase in the packing of components is the primary reason behind the huge difference in the two GPU's efficiency. Smaller logic units require less energy to operate and the shorter pathways connecting them means it takes less time for data to travel. Along with improvements in silicon chip manufacturing (reduction in defects and better insulation), this results in being able to run at higher clock speeds for the same power requirement or go with using less power for the same clock rate.

Speaking of clocks, this is another factor to consider. Let's compare the RV670, from November 2007 in the Radeon HD 3870, to the Vega 10 powering the Radeon RX Vega 64, released in August 2017.

The former has a fixed clock speed of around 775 MHz, whereas the latter has at least three available rates:

  • 850 MHz - when just doing desktop, 2D processing
  • 1250 MHz - for very heavy 3D work (known as the base clock)
  • 1550 MHz - for light-to-medium 3D loads (known as the boost clock)

We say 'at least' because the graphics card can dynamically vary its clock speed and the power consumed, between the above values, based on its workload and operating temperature. This is something that we take for granted now, with the latest GPUs, but this level of control simply didn't exist 13 years ago. The capability doesn't impact our efficiency results though, as we've only looked at peakprocessing output (i.e. at the maximum clock speeds), but it does affect how the card performs for the general consumer.

But the most important reason for the constant increase in GPU processing efficiency over the years has been down to the changes in the use of the processor itself. In June 2008, the best supercomputers around the world were all powered by CPUs from AMD, IBM, and Intel; eleven years later and there is one more chip vendor in the mix: Nvidia.

Their GV100 and GP100 processors were designed almost exclusively for the compute market, they feature a raft of key architectural features to support this, and many of them are very CPU-like. For example, the internal memory of the chips (the cache) looks similar to the likes of a typical server CPU:

  • Register file per SM = 256 kB
  • L0 cache per SM = 12 kB instruction
  • L1 cache per SM = 128 kB instruction / 128 kB data
  • L2 cache per GPU = 6 MB

Compare this to Intel's Xeon E5-2692 v2, which has been used in plenty of compute servers:

  • L1 cache per core = 32 kB instruction / 32 kB data
  • L2 cache per core = 256 kB
  • L3 cache per CPU = 30 MB

The logic units inside a modern GPU support a range of data formats; some have specialized units for integer, float, and matrix calculations, whereas others have complex structures that do them all. The units are connected to the cache and local memory with high speed, wide interconnects. These changes certainly help in processing 3D graphics, but it would be considered overkill for most games. But these GPUs were designed for a broader set of workloads than just images and there is name for this: general purpose GPU(GPGPU).

Machine learning and data mining are two fields that have benefited hugely from the development of GPGPUs and the supported software packages and APIs (e.g. Nvidia's CUDA, AMD's ROMc, OpenCL) as they involve lots of complex, massively-parallel calculations.

Large GPUs, packed with thousands of unified shader units, are perfect for such tasks, and both AMD and Nvidia (and now Intel is joining the fun) have invested billions of dollars into the R&D of chips that offer increasingly better compute performance.

At the moment, both companies design GPU architectures that can be employed into a variety of market sectors, and typically avoid making completely separate layouts for graphics and compute. This is because the bulk of the profit from making GPUs still comes selling 3D graphics cards, but whether it stays that way isn't certain. It is possible that as the demand for compute continues to rise, then AMD or Nvidia could dedicate more resources to improving the efficiency of chips for those markets, and less for rendering.

But whatever happens next, we know one thing is certain: the next round of multi-billion transistor, high power GPUs will continue to be just that little bit more efficient than their predecessors. And that's good news, no matter who's making it or what it's being used for.

Shopping Shortcuts:
  • GeForce GTX 1660 Super on Amazon
  • GeForce RTX 2060 on Amazon
  • GeForce RTX 2080 Super on Amazon
  • GeForce RTX 2080 Ti on Amazon
  • Radeon RX 580 on Amazon
  • Radeon RX 5600 XT on Amazon
  • Radeon RX 5700 XT on Amazon

0.131s , 9860.84375 kb

Copyright © 2025 Powered by 【?? ??? ??】25 Years Later: A Brief Analysis of GPU Processing Efficiency,Info Circulation  

Sitemap

Top 国产美女av在线 | 成人精品一区二区三 | 麻花豆传媒剧国产MV免费版特色 | 人妻少妇av无码一区二区 | 国产人妻丰满熟妇嗷嗷叫 | 一区二区三区在线免费视频 | 色欲AV亚洲AV无码精品 | 成人亚洲A片V一区二区三区蜜月 | 国产精品无码护士在线观看 | 国产亚洲精品久久久久婷婷图片 | 久久综合精品国产一区二区三区无码 | 永久免费的无码中文字幕 | 精品欧美一区二区在线观看欧美熟 | 欧美亚洲精品中文字幕乱码 | 波多野结衣中文字幕在线视频 | 91精品伊人久久久大香线蕉91 | 国产精品亚洲第一区在线 | 国产人妖专区 | 国产少妇影视乱伦 | 国产又色又爽又高潮免费视频麻豆 | 码A片国产精品18久久久... | 亚洲另类激情专区小说 | 国产成人吹潮在线播放 | 日日夜夜嫩草 | 狠狠躁日日躁夜夜躁A片小说按摩 | 狠日狠干日曰射 | 欧美一夜爽爽爽爽爽爽 | 国产v亚洲v天堂无码网站 | 97国产在线看片免费人成视频 | 99久久免费国产精品四虎 | 日韩精品无码免费视频一区二区 | 免费福利视频网站 | 亚洲中文字幕无码 | 激情偷乱人成视频在线观看 | h片国产在线观看播放免费 h入口成人精品人伦一区二区三区蜜 | 国产美女爽爽爽免费视频电影 | 国产福利电影一区二区三区久久精品这 | 无套内射视频囯产 | 丁香五月天婷婷缴情五月 | 久操线在视频在线观看 | 久久久国产精华特点:传承与创新 | 国产午夜在线观看免费 | 国产精品美女视频久久 | 精品久久黑丝高跟鞋 | 久久99这里只有精品国产 | 亚洲字幕AV一区二区三区四区 | 国产精品无码无卡无需播放器 | 五月天婷婷在在线视频 | 国产亚洲精品久久久999苍井空 | A片人人澡C片人人人妻付费 | 国产一区二区区别:内容差异与特点 | 国产免费久久爱久久啪 | 久久精品国产99国产精2024丨 | 91一区二区三区在线观看 | 亚洲日韩国产成人精品 | 91亚洲国产成人久久精品网站 | 成人三级精品视频在线观看 | 人与动动物xxxx毛片人与 | 国产av一区二区三区电影 | 精华国产一二三产区区别 | 国产真实自拍 | 亚洲国产美女精品久久久久 | 777精品出轨人妻国产 | 成人黄色网站视频色 | 国产3p露脸普通话对白 | 成人无码久久麻豆 | 国产亚洲成AV人片在线观黄桃 | 久久久久久夜精品精品免费啦 | 日韩综合在线观看 | 亚洲精品偷拍的自拍的 | a级粗大硬长爽猛视频免费 a级大胆欧 | 亚洲人av片在线观看 | 久久人妻无码毛片A片麻豆 久久人妻无码一区二区三区av | 免费无码又黄又爽又刺激 | 97人妻成人免费视频 | 国产手机精品一区二区 | 久久国产精品免费一区 | 亚洲精品一区二区另类图片 | 国产第一页浮力影院草草 | 国内精品久久久久秋霞 | 91精品国自产在线观看 | 国产成人久久精品二三区 | 欧美老妇与禽交 | 亚洲 综合 校园 欧美 制服 | 国产永久精品 | 国产av国片精品 | 亚洲国产成人av手机 | 伊人色综合视频一区二区三区 | 久久久久国产一区二 | 欧美三级中文字幕在线观看 | 久久久久久精品色费色费s 久久久久久精品天堂无码中文 | 国产精品人妻一区 | 另类专区在线亚洲视频 | 国产美女丝袜高潮 | 中文国产乱码在线人妻一区二区 | 国产乱伦无码伦av在线a | 日韩AV一区二区在线 | 熟妇的荡欲色综合亚洲图片 | 窝窝免费午夜视频一区二区 | 国产一区在线观看免费 | 欧美XXXX三人交性A片 | 国产一区二区三区内射 | 欧美日韩精品一区二区三区 | 波多野结衣的中文 | 在线日本高清日本免费 | 成人av无码系列 | 激情刺激欧美一区二区三区 | 麻豆精品久久国产 | 精品久久久久久综合日本 | 亚洲欧美日韩精品高清 | 久久国语露脸国产精品 | 丁香园生物医药科技网 | 国产精品久久久久久久伊一 | 91精品国产高清久久久久久io | 日韩精品观看 | 国产成人18黄网站在线观看 | 熟女乱色一区二区三区 | 无码日本邻居大乳人妻在线看 | 男女啪啪永久免费观看网站 | 人妻精品久久久久中文字幕一冢本 | 亚洲熟妇色xxxxx亚洲 | 思思久久99| 99国产精品九九视频免费看 | 国产精品精品视频 | 无码成人精品区在线观看 | 91探花视频| 亚洲欧美日韩视频高清专区 | 国产欧美日韩综合精品一区二区三区 | 高h高肉浪贱 | 911在线国内在线自产特色 | 欧美中文字幕一区二区三区 | AV无码影院在线播放 | av熟女五十路息孑电影 | 欧美视频在线观看精品二区 | 国产精品1区2区3区在线观看 | 国产成人亚洲影院在线播放 | 欧美XXXXX俄罗斯乱妇 | 国产成人综合色视频精品 | 国产天天在线 | 激情做人爱视频在线观看 | 18处破外女出血视频在线观看 | 人妻一区日韩二区国产欧美的无码 | 久久七国产精品 | 久久久久成亚洲国产av综合精品 | 99久久精品免费观看区一 | 国产精品va尤物在线观看蜜芽 | 日韩娇小性hd | 国产中文字精品久在线不 | 亚洲欧美另类久久久精品能播放的 | 亚洲av无码一区东京热久久 | 美女福利视频一区二区 | 99国精产品 | 亚洲欧美色综合影院 | 无码丰满熟妇一区二区 | 国产毛片盗摄视频 | 美女脱内衣露出了奶头无马赛克图片 | 婷婷五月俺去也人妻 | 亚洲国产精品成人av无码久久综合网 | 亚洲av无码一区二区三区dv | 亚洲.欧美.在线视频 | av免费在线看丁香五月 | 久久视频精品38线视频在线观看 | 欧美成人片一区二区三区 | 国产激情欧美 | 国产一区二区精品视频 | 黄色毛片免费网站 | 国产精品无码永久免费视频 | 国产av夜夜欢一区二区三区 | 二区三区高清人妻 | 国产精品亚洲精品久久久久 | 亚洲精品乱码久久久久蜜桃 | 日本高清视频:色情www | 无码一区二区三区亚洲人妻 | 欧美亚洲综合另类在线观看 | 熟妇人妻无码中文字幕 | 超清乱码中文字幕 | 欧美深夜福利网 | 日韩成人精品在线 | 99久久久国产精品日本久久区一 | 久色乳综合思思在线视频 | 欧美变态杂交xxxx | av毛片在线看 | 国产91精品精华液一区二区三区 | 亚洲欧美无人区乱码 | 亚洲中文字幕无码天然素人 | 老熟女视频一区二区 | 高清亚洲色精品一区二区三区av | 国产午夜精品久久久久久久 | 亚洲av鲁丝一区二区三区 | 国产精品人妻一区二区 | 波多野结衣一区二区三区av高清 | 无码缴情做A爱片毛片A片 | 国产日产欧美精品一区二区三区 | 日本黄色三级视频 | 91免费看 日韩一区二区 | 91涩涩视频 | 99久久精品毛片免费播放 | 国产电影一区二区三区:深度解读中国电影的挑战与机遇 | 一本道久久精 | 91制片厂果冻传媒公司苏语棠 | 久久无码AV亚洲精品色午夜麻豆 | 人妻系列无码专区69影院 | 国内揄拍国内精品对白86 | 一国产二欧美三日韩 | 911亚洲精品永久入口 | 精品午夜福利无人区乱码一区 | 国产av福利久久精 | 中文字幕人妻熟女免费手机在线观看 | 亚洲国产成人高清在线观看 | 久久精品国产日本波多野结衣 | 日本黄色免费网址 | 国产亚洲精品字幕在线观看 | 国产私伦一区二区三区 | 精品一区二区三区无码免费视频 | 爱豆传媒在线观看视频 | 国产丰满麻豆videossex | 国产乱码卡二卡三卡43 | 日本一道本国产va在线国产 | 亚洲日本欧美综合在线一电视剧在线观看 | 精品人妻少妇av免费久久 | 久久精品视在线看1 | 亚洲av元码天堂一区二区三区 | 99精品欧美一区二区三区白人 | 亚洲伦理一区二区三区 | 日本一道本不卡免费播放 | 人与动物xxxx毛片人与狍 | 亚洲欧美日韩中文天堂 | 中国性少妇内 | 91久久偷偷做嫩草影院电久久受www免费人成 | 亚洲A片V一区二区三区有声 | 免费国产美女爽到喷出水来视频 | 国产精品亚洲专区无码第一页 | 日韩精品人妻av一区二区三区 | 日韩精品成人动漫 | 饥渴少妇A片AAA毛片小说 | 精品动漫一区二区无遮挡 | 国产精品视频免费一区二区三区 | 中文幕无线码中文字蜜桃 | 日本黄色免费 | 日韩国产精品无码一区二区三区 | 国产三级精品三级在线观看专1 | 2024国产精品极品色在线 | 日韩精品国产自在久久现线拍 | 天天躁人人躁人人躁狂躁 | 亚洲欧美日产国产一区二区 | 精品无码国产自产在线观看老师 | 国产偷窥自拍 | 国产成人精品在线高清 | 国产午夜福利视频第三区 | 国产欧美精选激情视频 | 国产无人区卡一卡二卡到底是怎么回事?揭开这些谜团的真相 国产无人区卡一卡二卡乱码 | 永久免费看MV网站入口亚洲 | 国产毛片| 1769国产精品免费视频带搜索 | 国产成人高清一区二区三区视频 | 成人免费无码大片a毛片视频 | 成人精品丝袜在线一区 | 精品少妇ay一区二区三区 | 国产ts自慰 | 久久久久久一级毛片免费野外 | 欧美色精品人妻在线视频 | 进去粗粗硬硬紧紧的好爽免费视频 | 精品国产理论在线观看不卡 | 国产亚洲精品VA片在线播放 | 国产欧美性爱亚洲性片 | 国产乱淫免费观看 | 插影院 | 久久久久久国产精品嫩草网站 | 成人色综合综合网站 | 国产天天在线 | 色窝窝无码一区二区三区成人网站 | 精品国产福利片在线观看 | 国产熟女aa级毛片www古代片 | 熟女人妻久久中文字幕一二区 | 无码精油按摩潮喷在播放 | 性xxxx欧美老妇胖老太性多毛 | 国产欧美高清一区二区三区 | 久久精品福利 欧美日韩看大片人人网 | 精东视频下载 | 亚洲美洲韩美在线观看 | 亚洲欧美精品一区二区三区四区 | 狠狠精品干练久久久无码中文字幕 | 免费精品国产人妻国语三上优雅 | 久久国产精品福利一区二区三区 | 精品欧美一区手机在线观看 | 精品久久久无码人妻 | 无码淫网站 | 97精品人妻一区二区三 | 日日摸夜夜添夜夜添影院视频 | 99久久久无码国产精品性波多 | 欧美丰满熟妇BBB久久久 | 无码不卡免费高 | 色偷一区国产精品 | 麻豆一区二区中文字幕 | 影音先锋av天堂 | 日韩AV无码啪啪网站大全 | 91成人免费观看网站 | 91制片厂果冻传媒天美传媒在线观看 | 国产综合日韩另类一区二区 | 久久国产亚洲精品美女久久久久 | 久久精品福利 欧美日韩看大片人人网 | 国产精品亚洲欧美日韩久久 | 老熟妇乱子伦牲交视频 | 国产亚洲欧美日韩精品一区二区三区 | 成人A片动漫无码免费播放 成人a片国产无码免费视 | 日本有码在线观看 | 欧美粗大猛烈人妖 | 欧美激情久久久久久久大片 | 欧美日韩国产首页 | 国产成人无码一区二区三区在线 | 亚洲中文字幕在线资源第1页 | 亚洲女同一区二区 | 国产系列丝袜熟女精品视频 | 国产精品户外野外 | 91精品手机国产在线能下载蜜臀 | 亚洲国产成人久久一区二区三区 | av无码在线观看 | 精品日韩二区三区精品视频 | 麻豆黑色丝袜j | 国内精品福利视频 | 99久久国产综合精品swag | 久久久国产精品免费无码一区 | 二级午夜理论片 | 丁香五六月婷婷 | 国产免费午夜一区二区视频 | 国产精品一区二区手机看片 | 高清不卡欧美性理论片少妇性色生活片 | 韩国三级伦理在线 | 中国女人和老外的毛片 | 高清国产av一区二区三区 | 久久久久久久精品免费看人女 | 日日艹夜夜艹 | a级毛片精品免费看 | 欧美午夜网站 | 青春草国产成人精品久久 | 成人精品一区二区三区网站 | 偷拍殴美一区二区三区 | 国产v无码专区亚洲v桃花庵 | 日本三区四区免费高清不卡 | 欧美猛交XXX无码黑寡妇 | 欧美性动态图 | 91精品国产免费自 | 亚洲一线产区和二线产区的区别广告 | 国产熟女亚洲精品麻豆 | 国产丝袜二区在线播放 | 进去粗粗硬硬紧紧的好爽免费视频 | 天美在线观看 | 亚洲色精品一区二区三区四区 | 国产av永久无码精品 | 久久精品无码一区二区www | 2024天天干天天射 | 国产欧美日产一区二区三区 | 国产丝袜一区 | 中文字幕 在线 欧美 日韩 制服 | 国产乱子伦农村叉叉叉日本免费一区二区三区 | 国产精品三级美女网站全黄真人一级毛片 | 国产亚洲一区在线 | 高清国产免费观看视频在线 | 久久久久久精品毛片a级蜜桃 | 成人无码视频 | 毛片无码一区二区三区a片视频 | 爆乳无码专区丁香婷婷网五月 | 四虎影视免费永久在线观看 | 福利吧分享你的福利吧 | 成人无码www免费视频欧美 | 国产交换精品一区二区三区免费 | 精品国产种子在线观看 | 国产无码黄色网站在线观看 | 国精产品三区四区有限公司 | 色拍拍在线精品视频 | 日韩在线观看精品 | 久久久日韩精品一区二区 | 久久国产这里只有精品 | 日本成片网站 | 无码精品人妻一区二区三区老牛 | 国产精品白浆无码 | 国产精品爆乳奶水无码视频国产 | 久久久999国产精品 久久久999久久久精品 | 亚洲精品无码苍井空A片 | 国产精品熟女视频一区二区 | 国产精品日本无码久久一 | 蝌蚪自拍网站 | 精品超清影视工场全集在线观看免费版 | 日本a级视频在线播放 | 撸撸在线影院 | 丁香五月网久久综合 | 久久久久成人精品无码中文字幕 | 国产一区二区三区视频在线观看 | 日本黄色免费网址 | 精品人妻系列无码人妻漫画 | 激情综合五月天激情 | 免费观看又色又爽又黄的忠诚 | 二区日本高清亚州av综合色区无码 | 国产日韩ai换脸在线第一页 | 天天综合网网欲色 | 亚洲国产精品午夜福利在线观看 | 精品少妇无码一区二区三批 | 宝贝乖把腿分大一点h欧阳凝小说 | 国产中文字幕在 | 久久国产精品99久久久久久老狼 | 真实乱子伦小说 | 久久久国产精品人人片 | 在线观看的免费视频网站 | 视频一区二区三区欧美国产 | 91麻豆天美京东蜜桃传媒老牛 | 国产精品久久丫毛片A片软件 | 中国鲜肉gay高中xx禁18网 | 婷婷六月天在线 | 老牛无码人妻精品1国产 | 精品人妻一区二区三区久久夜夜嗨欧美电影在线播放 | 国产精品美女被啪啪啪 | 国产又色又爽又高潮免费视频麻豆 | 91精品久久一区二区三区 | 日韩国产人妻一区二区三区 | 国产丰满人妻一区二区 | 亚洲精品乱码久久久久 | 国产成人高清在线观看视频 | 99久久无色码中文字 | 久久丁香视频 | 蜜臀av无码精品国产 | 日韩免费无码一区二区三区 | 亚洲亚中文久久 | 亚洲 欧美 天堂 综合 | 国产激情无码一区二区免费 | 日本三级观看高清免费 | 黑人巨大两根一起挤进A片小说 | 成人综合网站 | 国产精品毛片大全 | 国产精品免费久久久久影院 | 国产三级做爰在线播放 | 99国产在线视频有精品视频 | 成年大片免费视频播放二级 | 日韩亚洲中文错码电影院 | 精品国产女人爽到喷水 | 中文字幕av人妻少妇一区二区 | 高清一区二区三区 | 丁香五月精品亚洲 | 波多野结衣中文一区二区 | 懂你的影院在线观看 | 久久99热这里只有精品7 | 无码国产乱人伦偷精品视频 | 高清国产天堂在线BT免费 | 国产a级特黄的片子视频 | 国产91无码福利在线 | 精品1卡二卡三卡 | 91精品丝袜国产高跟在线一区 | 2024久久免费精品国产72精品 | 亚洲男人天堂网2014av | 色一情一乱一伦一区二区三区 | 亚洲成人最新毛片基地 | 波多野结衣高潮喷水在线观看 | 日日摸天天碰中文字幕你懂的 | 2024国产麻豆剧传媒app在线观看 | 91日韩天堂一区二区二区 | 国产不卡欧美视频在线观看 | 久久精品国产亚洲av高清热 | 岛国午夜精品视频在线观看 | jizz视频| 久久国产亚洲av无码 | 亚洲午夜A片一区二区 | 亚洲第一成人在线 | 超碰97av 在线人人操 | 911国产自产精品a | 日本无码一区人妻免费视频 | 国产精品成人在免费线播放 | 国产亚洲欧美日韩在线看片 | a级黑人大硬长爽猛出猛进 a级黄韩国电影免费久久久 | 激情内射亚州一区二区三区爱妻 | av先锋影音资源男人站 | 国产69堂无码一区二区三区 | 久久综合九色综合欧美婷婷 | 精品久久久一二三区 | 精品第一国产综合精品蜜芽 | 成人精品影院亚洲 | 99日本精品永久免费久久 | 欧美一区二区三区久久综 | 麻豆激情国产成人 | md豆传媒一二三区视频在线 | 精品一区二区日本高清 | 泷泽萝拉第一部av4k高清在线播放 | 成人秘免费网站 | 久久久久久一级毛片免费无遮 | 麻豆精品久久久一区二区 | 亚洲精品国产一区二区 | 国产精品无码翘臀在线看 | 精品人妻中文字幕有码在线 | 免费全部高H视频无码无遮掩 | 日韩精品中文字幕在线观看 | 加勒比东京热av蜜臀 | 日本午夜视频在 | 丁香婷婷久久 | a人无码亚洲成a打开 | av无码专区 | 欧美午夜片欧美片在线观看 | 99精品人妻无码专区在线视频区 | 韩国三级日本三级香港三级黄 | 日本亚洲一区二区三区 | 国产亚洲欧美视频在线观看 | 国产网站吊带袜天使第二季 | 柳岩老师好紧好爽再浪一点 | 99热只有这里有精品 | 国产欧美动漫日韩在线一区二区三区 | 亚洲欧美偷拍综合图区 | 国产成人一区二区三区高清 | 国产AV亚洲一区精午夜麻豆 | 麻豆精品久久久一区二 | 欧美自拍偷拍一区二区 | 中文在线日本不卡 | 自拍视频91 | 亚洲精品无码aⅴ中文字幕蜜桃 | a级日韩乱理伦片在线观看 a级视频不卡无遮挡 | 日韩一区二区aⅴ无码大片无码 | 精品无码中文字幕网站 | 中文字幕少妇偷乱视频在线 | 免费女人18a级毛片视频 | 国产伦精品一区二区三区在线观 | 天天精品人人综合五月 | 国产精品三级网站 | 无码av无码天堂资源w | 伦理类题材电视剧 | 国产精品成人免费综合 | 日韩国产校园综合 | a三级毛片 | 精品AV综合导航 | 国产成人ⅤA视频永久入口 国产成人aⅴ大片大片 | 国产制服日韩丝袜86页雏田 | 亚洲精品国产自在现线 | 麻豆视传媒入口 | 丁香五月国产精品 | 国产69精品一 | a级国产乱理伦片 | 欧洲精品专区永久免费区 | 日本高清不卡码无码v亚洲 日本高清不卡免费 | 天天躁日日躁狠狠躁AV麻豆 | 国产福利一区二区三区在线播放 | 波多野结衣亚洲av | 国产视频无码在线观看 | 丁香花在线观看免费观看图片 | 国产女同久久精品国产99 | 欧美 精品国产制服第 | 私人影院一区二区三区 | 欧美特级午夜一区二区三 | 成人片在线观看无码 | 国产高清免费观看 | 日本高清视频在线无吗 | 99久久久国产精品 | 在线亚洲午夜片av大片动图 | 视频一区二区三区欧美国产 | 久久精品免费观看 | 国产肥臀熟女极品国产馆 | 国产欧美日韩亚洲一区二区三区 | 亚洲精品天堂在线观看 | 国产午夜福利小视频合集 | 国产爆操美女五月天 | 国产又色又爽又黄的视频免费看 | 国产91福利无码一区在线 | 欧美日本韩国 | 成人女人看片免费视频放人 | 亚洲一区二区三区视频 | 成人v专区精品无码国产 | 成人在线毛片精品伊人热e国产 | 欧美躁天天躁无码中文字 | 三级 网站 | 国产欧美日韩一区二区三 | 天天综合久久一区二区 | 波多野结衣中文字幕一区 | 国产裸拍裸体视频在线观看 | 免费的毛片视频 | 玖玖精品在线视频 | 成a人在线观看 | 国产福利日本一区二区三区 | 夂久精品国产久精国产 | 天堂国产一区二区三区四区不卡 | 免费老外的毛片清高 | 一本久道久久综合狠狠躁AV | a级伦国产乱理片在线观看 a级裸毛片 | 2024av亚洲男人的天堂 | 麻豆国产96在线日韩麻豆 | 国产av丝袜一区二区三区 | 免费看成人的网站软件 | 精品日韩免费视频在线观看 | 国产成人精品一区二区三区在线 | 国产在线欧美日韩一区二区 | 成人全黄A片免费看 | 狼狼色丁香久久女婷婷综合 | 久久久久中文字幕无码人妻 | 日韩不卡免费视频 | 日韩欧美中文字幕一区 | 精品国产亚洲一区二区三区 | 国产精品视频一区二区三区四区 | 久久久久久九九99精品午夜福利91 | 欧美日韩亚洲TV不卡久久 | 香港三级日本三级韩国三级韩 | 自拍少妇综合在线观看 | 一本道综合婷婷五国内精品综合 | 三级网国产精品 | 丁香婷婷综合久久来来去 | 2024中文字幕在线 | 久久艳妇乳肉豪妇荡乳A片PY | 男人天堂网2024最新地址 | 亚洲综合伊人色一区 | 18紧黄网站禁片免费观看 | 人妻三级日本香港三级极97 | 国产欧美精品一区aⅴ影院 国产欧美精品一区二区 | 开心色播网网址 | 亚洲av综合av一区二区三区 | 午夜伦理伦理片在线观 | 九九99久久 | 2018天天干天天拍 | 色撸撸 | 国产欧美日韩图片一区二区 | 69久久国产精品亚洲大片 | 日本黄线在线播放免费观看 | 精品中文字幕无码A片蜜桃 精品中文字幕一区二区三区 | 在线观看99无码人妻一区二区三区免 | 亚洲18色成人网站www | 潮喷取精10次gay在线观看 | 国产亚洲精品久久久久久老妇 | 成人动漫精品一区二区三区在线观看 | 中文有无人妻vs无码人妻激烈 | 美女黄频网站一区二区三区 | 亚洲黄色性爱在线观看 | a片日本一区二区三区电影全集 | 欧美色图一区二区 | 女人十八毛片A片久久18 | 欧美又黄又大又爽a片三年片 | 久久久久久精品人妻免费影视网 | 天天操天天天 偷怕自怕影院 | 亚洲加勒比无码一区二区 | 欧美人成在| 亚州成a人片在线观看无码 亚州国产欧美一区二区三区在线观看 | 国产黄三级三·级三级 | 精品热99| 久久久久久一区国产精品最新章节 | 二区天堂国产成人无码精品久久久露 | 精品国产拍国产天天人 | 99久久精品一区二区三 | 国产五月色婷婷六月丁香视频 | 国产成版人视频网 | 国产色情无码永久免费软件 | 99精品欧美一区二区三区 | 成人午夜爽A片免费视频 | 亚洲国产精品综合福利专区 | 色妞精品av一区二区三区 | 日韩成人大屁股内射喷水 | 日韩成人免费一级毛片 | 成人性生交A片免费网 | 日韩专区欧美激情 | 国产精品一区二区三区免费 | 国产精品一区2区三区内射 国产精品一区AV在线播放 | 丰满少妇女人a毛片视频 | 被cao哭高H调教1v1H | 国产av天堂吧手机版 | 国产精品二区久久 | 国产成人精品高清国产三级 | αv天堂亚洲师生中文制服 αv天堂一区二区三区 | 成人熟女视频一区二区三区 | 精品在线一区二区三区 | 国产啪视频免费观看视频 | 久久精品一区二区三区无码 | 日本黄色三级网站 | 扒开女人下面使劲桶动态图 | 国产高清一区二区在线免费观看 | 成人国产精品免费视频 | 久久久无码精品国产人妻 | 精品中文字幕久久久久久 | 日本无码免费久久久精品 | 亚洲日韩精品AV中文字幕 | 精品人妻少妇无码视频 | 成综合人影院在院播放 | 潮喷97免费人妻 | 无码精品a∨在线观看十八禁软件 | 色窝窝无码一区二区三区成人网站 | 国产偷国产偷亚洲清高动态图 | 欧美大片精品免费永久看nba | 香蕉乱码 | 日韩一区二区三区 | 中文在线免费不卡视频 | 少妇人妻偷人无码激情 | ⅴ无码大片在线看 | 日日操夜夜操天天操 | 亚洲色久精品久久久久影院 | 国产美女a做受大片免费 | 久久精品中文字幕久久 | 国产精品视频99 | 欧美日韩永久免费看看视频 | 2024精品国产福利在线观看香蕉 | 91精品国产综合成人高清视频在线观看 | 国产成人精品福利一区 | 亚洲AV无码区在线观看东京热 | 人妻少妇引诱隔壁 | 国产aⅴ无码专区亚 | 国产成人一区二区三区影院动漫 | 久久久久久无码精品亚洲日韩 | 久久亚洲精品国产精品黑人 | 一区毛片 | 久久久久久精品一区二区三区日本 | 国产另类日韩欧美 | 国产精品AV一区二区三区不卡蜜 | 国产亚洲精品久久久ai换 | 国产深夜福利视频 | 国产真实强被迫伦姧女在线观看 | 99久久精品国产一区二区成人 | 国产麻豆激情婷婷视频 | 激情综合婷婷丁香五月合色字幕 | 国产99久久九九精品无码免费 | 国内精品久久久久影院嫩草 | 国91干逼精选观看 | 国产欧美日韩综合视频在线 | 精东视频影视传媒制作公司 | 精品久久蜜臀AV色欲 | 久热久色| 久久久久高潮综合影院 | 99精品无人区乱码1区2区3区 | 精品国产三级av在线 | 插的痛的视频一卡二卡三卡 | a级毛片无码免费真人 | 美国人成毛片在线播放 | 丰满熟女一区二区蜜桃 | 鲁一鲁综合 | 欧美午夜艳片欧美精品 | 欧美另类精品一区视频 | 久久91精品国产91久久麻豆 | 日韩一级特黄毛片在线看 | 蜜臀色欲av无码人妻 | 亚洲欧洲日本天天堂在线观看 | 成人a毛片免费视频观看 | 国产女做a精品视频网站免费 | 国产亚洲人成在线v网站 | 欧美日韩精品无码免费看A片 | 国产精品久久久久久无码人妻 | 无码欧精品亚洲日韩一区九色 | 中文字幕av无码不卡免费 | 久久久无码一区二区三区 | 久久国产乱子伦精品免 | 久久久久高潮毛片免费 | 波多野结衣乳巨码无在线观看 | 丁香五月综合激情 | 欧美视频在线观看免费观 | 好久被狂躁A片视频无码免费视频 | 制服丝袜av无码专区完整版 | v一本久道久久波多野结 | 亚洲国产精品无码久久一区二 | 高清无码观看日产韩国精品黄色 | 亚洲欧美中文日韩v在线观看 | 黑人一本一本久久久三区成av人片 | 成人无码区免费A片视频WWW | 亚洲aⅴ鲁丝一区二区三区 亚洲AⅤ鲁丝一区二区三区 | 99久久国产综合精品五月天喷水一个少妇二区黑人久久老师 | jyzzjyzzz视频国产在线观看 | 欧美色综合天 | 欧美在线观看精品一区二区三区 | 久久国产精品人妻无码 | 精品久久久久久无码人妻 | 成人做爰高潮A片免费视频 成人做爰免费看视频韩国 成人做爰片免费网站 | 91免费视频网址完整版手机在线观看 | 粉嫩少妇内射浓精videos | 少妇人妻雪白丰满的肉体视 | 欧美激情一区免费观看 | 少妇三级综合在线观看 | 在线播放一区二区不卡三区 | 日日夜夜天天人人干干巴巴 | 福利视频一区二区牛牛 | 麻豆日产精品卡2卡3卡4卡5卡追逐那份独一无二的驾驭乐趣 | 亚洲精品国产第一区二区尤物 | 老熟妇仑乱视频一区二区 | 国产做a爰片久久毛片a片白丝 | 久久精品一区二区三区毛片网站大全 | 久久亚洲av成人无码国产最大 | 亚洲国产日本韩国欧美mv | 欧美日韩国产精品中文 | a级成人毛片免费在线观看 a级成人免费毛 | 精品国产乱码一区二区三区麻豆 | 日本老妇乱子伦中文视频 | 东京热无码av一区 | 精品国产欧美另类一区 | 亚洲精品无码久久 | av无码国产精品色午夜 | 国产福利微拍精品一区二区 | 少妇高潮喷水惨叫久无码一区二 | 国产乱子伦视频湖北 | 伊人久久免费视频 | 国产午夜片无码区在线导航 | 久久久久无码精品亚洲日韩 | 国产伦子系列沙发午睡 | 亚洲一区二区三区无码毛片 | 国产无码高潮在线 | 欧美乱人伦视频 | 欧美日本国产xxxxx视频 | 欧美亚洲日本国产综合在线美利坚 | 成人国产欧美大片一区 | 天天干天天爱天天 | 国产亚洲欧美三级 | 久久久精品高潮美女毛片 | 91精品无码久久久久 | 91无套极品外 | 亚洲国产欧美国产第一区二区三区 | 97色伦色在线综合视频 | 精品久久久久久久中文字幕 |